首页> 外文期刊>RSC Advances >Highly monodisperse Cu3Mo2O9 micropompons with excellent performance in photocatalysis, photocurrent response and lithium storage
【24h】

Highly monodisperse Cu3Mo2O9 micropompons with excellent performance in photocatalysis, photocurrent response and lithium storage

机译:高度单分散CU3MO2O9微量化量,具有优异的光催化,光电流响应和锂储存性能优异

获取原文
获取原文并翻译 | 示例
           

摘要

We developed a simple and facile method for preparing two types of transition metal molybdates: AMoO(4) (A = Ni and Zn) and B3Mo2O9 (B = Cu and Zn). Initially, a hydrothermal reaction at 383 K for 10 h in an aqueous solution of ammonium molybdate tetrahydrate (AMT) and metal acetates (MAc2, M = Ni, Cu and Zn) was carried out to synthesize their precursors: NiMoO4 center dot xH(2)O, ZnMoO4 center dot 0.8H(2)O, Cu-3(OH)(2)(MoO4)(2) and Zn-3(OH)(2)(MoO4)(2). Subsequently, AMoO(4) with a 1D structure and B3Mo2O9 with a 3D structure were successfully constructed by sintering the precursors at 873 K for 3 h in air. Our result presented the first evidence that the generation of alpha-ZnMoO4 and Zn3Mo2O9 is dependent on the initial concentration of AMT or Zn(Ac)(2). More importantly, a highly monodisperse Cu3Mo2O9 micropompon structure was successfully created by an ethylenediaminetetraacetic acid (H4Y)-mediated hydrothermal route and a subsequent sintering process. We considered that H4Y, a strong competitive chelating ligand, played a significant role in prohibiting the formation of the intermediate (NH4)(2)Cu(MoO4)(2), thereby not only producing a monodisperse structure of Cu-3(OH)(2)(MoO4)(2) but also reducing the size of the structure by forming a stable complex: CuY. Three independent experiments: photocatalysis, photocurrent response and lithium storage were performed to discuss several possible applications of the as-obtained Cu3Mo2O9 micropompons. Our data demonstrated that the Cu3Mo2O9 material exhibited excellent photocatalytic efficiency for the degradation of Congo red under visible light irradiation. Also, the time-dependent photoresponse of the Cu3Mo2O9 gave a very high ratio (about 171) of light current to dark current and a stable photocurrent density, which were a reflection of a high concentration of photogenerated electron-hole pairs. Further, the material indicated good charge-discharge stability and high coulombic efficiency in lithium-ion batteries even during the 100 cycles. We believe that the present study represents a significant step in the development of transition metal molybdates.
机译:我们开发了一种制备两种过渡金属钼酸盐的简单而设为简单的方法:AMOO(4)(A = Ni和Zn)和B3MO2O9(B = Cu和Zn)。最初,在钼酸铵四水合物(AMT)和金属乙酸盐水溶液中为383k的水热反应(MAC2,M = Ni,Cu和Zn),以合成它们的前体:Nimoo4中心点XH(2 )O,ZnMoo4中心点0.8H(2)O,Cu-3(OH)(2)(Moo4)(2)和Zn-3(OH)(2)(Moo4)(2)。随后,通过在空气中在873k℃下烧结前体,成功构建具有1D结构和具有3D结构的B3MO2O9的AmOO(4)。我们的结果介绍了第一种证据,即α-ZnMoo4和Zn3MO2O9的产生取决于AMT或Zn(AC)(2)的初始浓度。更重要的是,通过乙二胺四乙酸(H4Y)介导的水热途径和随后的烧结过程成功地产生了高度单分散的Cu 3MO2O9微单打结构。我们认为H4Y是一种强大的竞争性螯合配体,在禁止形成中间体(NH4)(2)Cu(Moo4)(2)中发挥了重要作用,从而不得产生Cu-3(OH)的单分散结构(2)(MOO4)(2),但也通过形成稳定的复合物来降低结构的大小:CUY。三个独立实验:进行光催化,光电流响应和锂储存,讨论AS获得的Cu3MO2O9微量化量的几种可能的应用。我们的数据表明,Cu3MO2O9材料表现出优异的光催化效率,用于在可见光照射下刚果红色的降解。而且,Cu3MO2O9的时间依赖性光响应对暗电流的光电流非常高(约171)和稳定的光电流密度,这是高浓度的光生电子孔对的反​​射。此外,即使在100个循环期间,该材料也表示锂离子电池中的良好充电放电稳定性和高库仑效率。我们认为本研究代表了过渡金属钼酸盐的发展的重要一步。

著录项

  • 来源
    《RSC Advances》 |2015年第16期|共10页
  • 作者单位

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn CAS Key Lab Mat Energy Convers Hefei 230026 Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn CAS Key Lab Mat Energy Convers Hefei 230026 Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn CAS Key Lab Mat Energy Convers Hefei 230026 Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn CAS Key Lab Mat Energy Convers Hefei 230026 Peoples R China;

    Univ Sci &

    Technol China Dept Chem Hefei 230026 Peoples R China;

    Univ Sci &

    Technol China Dept Chem Hefei 230026 Peoples R China;

    Univ Sci &

    Technol China Dept Chem Hefei 230026 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号