首页> 外文期刊>RSC Advances >Configurable plasmonic substrates from heat-driven imprint-transferred Ag nanopatterns for enhanced photoluminescence
【24h】

Configurable plasmonic substrates from heat-driven imprint-transferred Ag nanopatterns for enhanced photoluminescence

机译:来自热驱动的压印转移的AG纳米图的可配置等离子体基材用于增强的光致发光

获取原文
获取原文并翻译 | 示例
           

摘要

Despite substantial progress in metal nanopatterning, fabricating ultra-large-area plasmonic substrates with well-defined and well-controlled nanopatterned arrays remains a major technological challenge. Here, we describe a novel facile technology (i.e., configurable metal nanoimprint transfer based on geometric reconfiguration during thermal annealing) to fabricate ultra-large-area tunable plasmonic substrates. The simultaneous transfer and imprint of the metal layers from the patterned mold surface results in metal nanopatterns embedded in a partially cured photoresist, the shape of which can be modified systematically by optimized heat treatments. The plasmonic properties of the metal nanopattern array could be precisely tuned through the heat-driven shape reconfiguration of metal patterns. The shape transformation leads to sharp and blue-shifted extinction spectra and unusual strong excitation of the transverse mode of metal nanopatterns. Coarse tuning of the plasmon resonance wavelength is achieved by varying the diameter of the nanopatterned features, and fine tuning is accomplished by reconfiguring the geometry of the nanopatterned features via thermal annealing. Only three master patterns are required to cover the wavelength range 535-837 nm. By applying the plasmon substrates to photoluminescence (PL) measurements, an enhancement in the green photoluminescence (PL) intensity of a factor more than 9.4 is achieved due to the improved matching between the wavelengths for PL emission and plasmon resonance. The fabrication strategy described here enables us to achieve various plasmonic properties using a single master pattern, which provides both tailorable plasmonic properties and remarkable process flexibility.
机译:尽管在金属纳米件中取得了实质性的进展,但具有明确定义且良好控制的纳米模式阵列的超大型阶层基板仍然是一个主要的技术挑战。在这里,我们描述了一种新颖的构建技术(即,基于热退火期间的几何重新配置​​的可配置的金属纳米压印转移),以制造超大型区域可调谐等离子体基板。与图案化模具表面的金属层的同时传递和压印导致嵌入部分固化的光致抗蚀剂中的金属纳米图案,其形状可以通过优化的热处理系统地系统地改性。可以通过金属图案的热驱动形状重新配置来精确调谐金属纳米透舱阵列的等离子体性能。形状转换导致夏普和蓝相的消光光谱和金属纳米透舱横向模式的异常强烈激发。通过改变纳米透明理由的特征的直径来实现等离子体共振波长的粗调,并且通过热退火重新配置纳米多理由的特征的几何形状来实现微调。只需要三个主模式来覆盖波长范围535-837 nm。通过将等离子基板到光致发光(PL)测量,在达到超过9.4倍的绿色光致发光(PL)强度由于波长为PL发射和等离子体共振之间的改进的匹配的增强。这里描述的制造策略使我们能够使用单个主图案来实现各种等离子体性能,这提供可定制的等离子体性能和显着的工艺灵活性。

著录项

  • 来源
    《RSC Advances》 |2015年第62期|共7页
  • 作者单位

    Korea Inst Machinery &

    Mat Nanomech Syst Res Div Taejon 305343 South Korea;

    Korea Inst Machinery &

    Mat Nanomech Syst Res Div Taejon 305343 South Korea;

    Chungnam Natl Univ Dept Mat Sci &

    Engn Taejon 305764 South Korea;

    Chungnam Natl Univ Dept Mat Sci &

    Engn Taejon 305764 South Korea;

    Korea Inst Machinery &

    Mat Nanomech Syst Res Div Taejon 305343 South Korea;

    Korea Inst Machinery &

    Mat Nanomech Syst Res Div Taejon 305343 South Korea;

    Korea Inst Machinery &

    Mat Nanomech Syst Res Div Taejon 305343 South Korea;

    Chungnam Natl Univ Dept Mat Sci &

    Engn Taejon 305764 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号