首页> 外文期刊>RSC Advances >Hierarchical Fe2O3@WO3 nanostructures with ultrahigh specific surface areas: microwave-assisted synthesis and enhanced H2S-sensing performance
【24h】

Hierarchical Fe2O3@WO3 nanostructures with ultrahigh specific surface areas: microwave-assisted synthesis and enhanced H2S-sensing performance

机译:具有超高比表面积的分层FE2O3 @ WO3纳米结构:微波辅助合成和增强的H2S感测性能

获取原文
获取原文并翻译 | 示例
           

摘要

Hierarchical Fe2O3@WO3 nanocomposites with ultrahigh specific areas, consisting of Fe2O3 nanoparticles (NPs) and single-crystal WO3 nanoplates, were synthesized via a microwave-heating (MH) in situ growth process. WO3 nanoplates were derived by an intercalation and topochemical-conversion route, and the Fe2O3 NPs were in situ grown on the WO3 surfaces via a heterogamous nucleation. The water-bath-heating (WH) process was also developed to synthesize a Fe2O3@WO3 nanocomposite for comparison purposes. The techniques of X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the samples obtained. The results show that alpha-Fe2O3 NPs with a size range of 5-10 nm are uniformly, tightly anchored on the surfaces of WO3 nanoplates in the Fe2O3@WO3 samples obtained via the MH process, whereas the alpha-Fe2O3 NPs are not uniform in particle-sizes and spatial distribution in the Fe2O3@WO3 samples obtained via the WH process. The BET surface area of the 5wt%Fe2O3@WO3 sample derived by the MH process is as high as 1207 m(2) g(-1), 5.9 times higher than that (203 m(2) g(-1)) of the corresponding WO3 nanoplates. The dramatic enhancement in the specific surface area of the Fe2O3@WO3 samples should be attributed to the hierarchical microstructure, which makes the internal surfaces or interfaces in aggregated polycrystals be fully outside surfaces via a house-of-cards configuration, where the single-layered and disconnected Fe2O3 NPs are tightly anchored on the surfaces of the WO3 nanoplates. The gas-sensing properties of the Fe2O3@WO3 sensors were investigated. The gas-sensors based on the Fe2O3@WO3 obtained via the MH process show a high response and selectivity to H2S at low operating temperatures. The 5wt%Fe2O3@WO3 sample shows the highest H2S-sensing response at 150 degrees C. Its response to 10 ppm H2S is as high as 192, 4 times higher than that of the WO3-nanoplate sensor. The improvement in the gas-sensing performance of the Fe2O3@WO3 nanocomposites can be attributed to the synergistic effect in compositions and the hierarchical microstructures with ultrahigh specific surface areas.
机译:分层的Fe2O3 @ WO3纳米复合材料具有超高的特定区域,包括氧化铁纳米颗粒(NP)和单晶WO3纳米片,分别通过在原位生长过程中微波加热(MH)合成。 WO3纳米板是由一个嵌入和局部化学转换路径导出的,并且所述的Fe2O3的NP经由heterogamous核分别在WO3表面上原位生长。水浴中加热(WH)过程也被开发以合成的Fe2O3 @ WO3纳米复合材料用于比较目的。 X射线衍射的技术(XRD),X-射线光电子能谱(XPS),扫描电子显微镜(SEM)和透射电子显微镜(TEM)来表征所获得的样品。结果表明的α-氧化铁纳米颗粒的尺寸范围在5-10nm均匀,紧密WO3纳米片经由MH方法获得的氧化铁@ WO3样品中的表面上的锚定,而所述α-Fe2O3的纳米颗粒不是均匀的颗粒大小和通过WH方法获得的氧化铁@ WO3样品中的空间分布。由MH过程得到的5重量%的Fe2O3 @ WO3的样品的BET表面积为高达1207米(2)克(-1),5.9倍高于(203米(2)克(-1))的相应的WO3纳米片。在Fe2O3的@ WO3的样品的比表面积的显着增强,应归功于该分层微结构,这使得内部表面或界面中聚集多晶体经由房屋的卡的结构,其中该单层完全外侧表面和断开的Fe2O3的NP被紧紧地锚定在WO3纳米片的表面上。所述的Fe2O3 @ WO3传感器的气体感测性能进行了研究。基于所述氧化铁@ WO3经由MH方法获得的气体传感器示出了在低操作温度的高响应和选择性为H 2 S.的5重量%的Fe2O3 @ WO3样本显示最高H2S感测在150℃下其响应于10ppm的H 2 S反应是高达192,比WO3-纳米板传感器的高4倍。在的气体感测性能的提高的Fe2O3 @ WO3纳米复合材料可以归因于在组合物中的协同作用,并且与超高比表面积的分层微结构。

著录项

  • 来源
    《RSC Advances》 |2015年第1期|共10页
  • 作者单位

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

    Zhengzhou Foreign Language Sch Zhengzhou 450000 Peoples R China;

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

    Zhengzhou Univ Sch Mat Sci &

    Engn Zhengzhou 450001 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号