首页> 外文期刊>Acta biomaterialia >Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants
【24h】

Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants

机译:激光结构的细菌纳米纤维素水凝胶支持软骨细胞向内生长和分化,并显示出作为软骨植入物的潜力

获取原文
获取原文并翻译 | 示例
           

摘要

The small size and heterogeneity of the pores in bacterial nanocellulose (BNC) hydrogels limit the ingrowth of cells and their use as tissue-engineered implant materials. The use of placeholders during BNC biosynthesis or post-processing steps such as (touch-free) laser perforation can overcome this limitation. Since three-dimensionally arranged channels may be required for homogeneous and functional seeding, three-dimensional (3-D) laser perforation of never-dried BNC hydrogels was performed. Never-dried BNC hydrogels were produced in different shapes by: (i) the cultivation of Gluconacetobacter xylinus (DSM 14666; synonym Komagataeibacter xylinus) in nutrient medium; (ii) the removal of bacterial residues/media components (0.1 M NaOH; 30 min; 100 C) and repeated washing (deionized water; pH 5.8); (iii) the unidirectional or 3-D laser perforation and cutting (pulsed CO2 Rofin SC ×10 laser; 220 μm channel diameter); and (iv) the final autoclaving (2 M NaOH; 121 C; 20 min) and washing (pyrogen-free water). In comparison to unmodified BNC, unidirectionally perforated - and particularly 3-D-perforated - BNC allowed ingrowth into and movement of vital bovine/human chondrocytes throughout the BNC nanofiber network. Laser perforation caused limited structural modifications (i.e. fiber or globular aggregates), but no chemical modifications, as indicated by Fourier transform infrared spectroscopy, X-ray photoelectron scattering and viability tests. Pre-cultured human chondrocytes seeding the surface/channels of laser-perforated BNC expressed cartilage-specific matrix products, indicating chondrocyte differentiation. 3-D-perforated BNC showed compressive strength comparable to that of unmodified samples. Unidirectionally or 3-D-perforated BNC shows high biocompatibility and provides short diffusion distances for nutrients and extracellular matrix components. Also, the resulting channels support migration into the BNC, matrix production and phenotypic stabilization of chondrocytes. It may thus be suitable for in vivo application, e.g. as a cartilage replacement material.
机译:细菌纳米纤维素(BNC)水凝胶中孔的小尺寸和异质性限制了细胞的向内生长及其作为组织工程植入材料的用途。在BNC生物合成或后处理步骤(例如(非接触式)激光打孔)中使用占位符可以克服此限制。由于均质和功能性播种可能需要三维排列的通道,因此对未干燥的BNC水凝胶进行了三维(3-D)激光穿孔。从未干燥的BNC水凝胶通过以下方式生产出不同的形状:(i)在营养培养基中培养木糖葡糖杆菌(DSM 14666;木糖古菌); (ii)去除细菌残留物/培养基成分(0.1M NaOH; 30分钟; 100℃)并重复洗涤(去离子水; pH 5.8); (iii)单向或3-D激光打孔和切割(脉冲CO2 Rofin SC×10激光;通道直径220μm); (iv)最后的高压灭菌(2M NaOH; 121℃; 20分钟)和洗涤(无热原水)。与未修饰的BNC相比,BNC单向穿孔-尤其是3D穿孔-允许重要的牛/人软骨细胞向内生长并在整个BNC纳米纤维网络中移动。激光穿孔引起有限的结构修饰(即纤维或球状聚集体),但是没有化学修饰,如傅立叶变换红外光谱法,X射线光电子散射和可行性测试所表明的。预培养的人软骨细胞播种了激光穿孔BNC的表面/通道,表达了软骨特异性基质产物,表明软骨细胞分化。 3-D穿孔的BNC的抗压强度与未改性的样品相当。单向或3-D穿孔的BNC具有高生物相容性,并为营养物和细胞外基质成分提供了较短的扩散距离。同样,产生的通道支持向BNC的迁移,基质产生和软骨细胞的表型稳定。因此,它可能适用于体内应用,例如。作为软骨的替代材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号