...
首页> 外文期刊>Biomaterials Science >A potent, minimally invasive and simple strategy of enhancing intracellular targeted delivery of Tat peptide-conjugated quantum dots: organic solvent-based permeation enhancer
【24h】

A potent, minimally invasive and simple strategy of enhancing intracellular targeted delivery of Tat peptide-conjugated quantum dots: organic solvent-based permeation enhancer

机译:增强Tat肽 - 共轭量子点的细胞内靶向递送的有效,微创和简单的策略:有机溶剂基渗透增强剂

获取原文
获取原文并翻译 | 示例
           

摘要

Targeted delivery of nanomaterials to specific intracellular locations is essential for the development of many nanomaterials-based biological applications. Thus far the targeting performance has been limited due to various intracellular transport barriers, especially intracellular vesicle trapping. Here we report the application of permeation enhancers based on organic solvents in small percentage to enhance the intracellular targeted delivery of nanomaterials. Previously permeation enhancers based on organic solvents and ionic liquids have been used in overcoming biological transport barriers at tissue, organ, and cellular levels, but this strategy has so far rarely been examined for its potential in facilitating transport of nanometer-scale entities across intracellular barriers, particularly intracellular vesicle trapping. Using the cell nucleus as a model intracellular target and Tat peptide-conjugated quantum dots (QDs-Tat) as a model nanomaterial-based probe, we demonstrate that a small percentage (e.g. 1%) of organic solvent greatly enhances nucleus targeting specificity as well as increasing endocytosis-based cellular uptake of QDs. We combine vesicle colocalization (DiO dye staining), vesicle integrity (calcein dye release), and single-particle studies (pair-correlation function microscopy) to investigate the process of organic solvent-enhanced vesicle escape of QDs-Tat. The organic solvent based vesicle escape-enhancing approach is found to be not only very effective but minimally invasive, resulting in high vesicle escape efficiency with no significant disruption to the membrane integrity of either intracellular vesicles or cells. This approach drastically outperforms the commonly used vesicle escape-enhancing agent (i.e., chloroquine, whose enhancement effect is based on disrupting vesicle integrity) in both potency and minimal invasiveness. Finally, we apply organic solvent-based targeting enhancement to improve the intracellular delivery of the anticancer drug doxorubicin (DOX).
机译:纳米材料对特异性细胞内位置的靶向递送对于许多基于纳米材料的生物学应用至关重要。因此,由于各种细胞内运输障碍,尤其是细胞内囊泡诱捕,迄今为止靶向性能受到限制。在这里,我们报告了渗透增强剂在小百分比上以小百分比的施用来增强纳米材料的细胞内靶向递送。以前基于有机溶剂和离子液体的渗透增强剂已经用于克服组织,器官和细胞水平的生物传输屏障,但到目前为止已经促进了促进细胞内屏障的纳米规模实体运输的潜力,特别是细胞内囊泡诱捕。使用细胞核作为模型细胞内靶和TAT肽 - 缀合的量子点(QDS-TAT)作为型号纳米材料的探针,我们证明了小百分比(例如1%)的有机溶剂也大大增强了靶向特异性的细胞核随着增加基于内吞炎的QDS细胞摄取。我们将囊泡分层化(DIO染料染色),囊泡完整性(Calcein染料释放)和单颗粒研究(对相关函数显微镜)相结合,研究QDS-TAT的有机溶剂增强囊泡叶片的过程。发现有机溶剂基囊泡逃脱增强方法不仅非常有效但最小的侵入性,导致高囊泡逃逸效率,对细胞内囊泡或细胞的膜完整性没有显着破坏。这种方法急剧优于常用的囊泡逃生增强剂(即氯喹,其增强效果基于弱势侵扰性的囊泡完整性。最后,我们应用基于有机溶剂的靶向增强,以改善抗癌药物的细胞内递送(DOX)。

著录项

  • 来源
    《Biomaterials Science》 |2018年第11期|共11页
  • 作者单位

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Coll Engn &

    Appl Sci Dept Biomed Engn Nanjing Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号