...
首页> 外文期刊>Biomaterials Science >Microencapsulation improves chondrogenesis in vitro and cartilaginous matrix stability in vivo compared to bulk encapsulation
【24h】

Microencapsulation improves chondrogenesis in vitro and cartilaginous matrix stability in vivo compared to bulk encapsulation

机译:与散装封装相比,微胶囊改善了体外和软骨基质稳定性的软骨发生,而且

获取原文
获取原文并翻译 | 示例
           

摘要

The encapsulation of cells into microgels is attractive for applications in tissue regeneration. While cells are protected against shear stress during injection, the assembly of microgels after injection into a tissue defect also forms a macroporous scaffold that allows effective nutrient transport throughout the construct. However, in most of current strategies that form microgel-based macroporous scaffold or higher-order structures, cells are seeded during or post the assembly process and not microencapsulated in situ. The objective of this study is to investigate the chondrogenic phenotype of microencapsulated fetal chondrocytes in a biocompatible, assembled microgel system vs. bulk gels and to test the stability of the constructs in vivo. Here, we demonstrate that cell microencapsulation leads to increased expression of cartilage-specific genes in a TGF-beta 1-dependent manner. This correlates, as shown by histological staining, with the ability of microencapsulated cells to deposit cartilaginous matrix after migrating to the surface of the microgels, while keeping a macroscopic granular morphology. Implantation of precultured scaffolds in a subcutaneous mouse model results in vessel infiltration in bulk gels but not in assembled microgels, suggesting a higher stability of the matrix produced by the cells in the assembled microgel constructs. The cells are able to remodel the microgels as demonstrated by the gradual disappearance of the granular structure in vivo. The biocompatible microencapsulation and microgel assembly system presented in this article therefore hold great promise as an injectable system for cartilage repair.
机译:对微凝胶的细胞封装对于组织再生中的应用是具有吸引力的。虽然在注射期间,细胞免受剪切应力,但注射到组织缺陷后的微凝胶的组装也形成了大孔支架,其允许在整个构建体中有效营养转运。然而,在形成基于微凝胶的大孔支架或高阶结构的大多数当前策略中,在组装过程中接种或割伤细胞并没有以原位微胶囊化。本研究的目的是研究生物相容性,组装的微凝胶系统与散装凝胶中微胶囊化胎儿软骨细胞的软骨形成表型,并测试体内构建体的稳定性。在这里,我们证明细胞微胶囊化导致以TGF-β1依赖性方式增加了特异性特异性基因的表达。这种相关性,如组织学染色所示,微囊化细胞在迁移到微凝胶的表面后沉积有软骨基质的能力,同时保持宏观颗粒形态。在皮下小鼠模型中植入预制支架导致散装凝胶中的血管浸润,但不在组装的微凝胶中,表明由组装的微凝胶构建体中细胞产生的基质的稳定性更高。细胞能够通过体内颗粒结构的逐渐消失来重塑微凝胶。因此,本文中提供的生物相容性微胶囊和微凝胶组装系统因此作为软骨修复的可注射系统具有很大的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号