首页> 外文期刊>Biotechnology Progress >Comprehensive analysis of metabolic sensitivity of 1,4-butanediol producing Escherichia coli toward substrate and oxygen availability
【24h】

Comprehensive analysis of metabolic sensitivity of 1,4-butanediol producing Escherichia coli toward substrate and oxygen availability

机译:1,4-丁二醇生产大肠杆菌朝向基材和氧气可用性的综合分析

获取原文
获取原文并翻译 | 示例
           

摘要

Nowadays, chemical production of 1,4-butanediol is supplemented by biotechnological processes using a genetically modified Escherichia coli strain, which is an industrial showcase of successful application of metabolic engineering. However, large scale bioprocess performance can be affected by presence of physical and chemical gradients in bioreactors which are a consequence of imperfect mixing and limited oxygen transfer. Hence, upscaling comes along with local and time dependent fluctuations of cultivation conditions. This study emphasizes on scale-up related effects of microbial 1,4-butanediol production by comprehensive bioprocess characterization in lab scale. Due to metabolic network constraints 1,4-butanediol formation takes place under oxygen limited microaerobic conditions, which can be hardly realized in large scale bioreactor. The purpose of this study was to assess the extent to which substrate and oxygen availability influence the productivity. It was found, that the substrate specific product yield and the production rate are higher under substrate excess than under substrate limitation. Furthermore, the level of oxygen supply within microaerobic conditions revealed strong effects on product and by-product formation. Under strong oxygen deprivation nearly 30% of the consumed carbon is converted into 1,4-butanediol, whereas an increase in oxygen supply results in 1,4-butanediol reduction of 77%. Strikingly, increasing oxygen availability leads to strong increase of main by-product acetate as well as doubled carbon dioxide formation. The study provides clear evidence that scale-up of microaerobic bioprocesses constitute a substantial challenge. Although oxygen is strictly required for product formation, the data give clear evidence that terms of anaerobic and especially aerobic conditions strongly interfere with 1,4-butanediol production.
机译:如今,使用遗传改性的大肠杆菌菌株通过生物技术过程补充了1,4-丁二醇的化学产量,这是一种成功地应用代谢工程的工业展示。然而,大规模的生物过程性能可能受到生物反应器中的物理和化学梯度的存在影响,这是渗透混合和有限的氧气转移的结果。因此,Upscaling与局部和时间依赖性的培养条件的波动一起出现。本研究强调了通过实验室规模综合生物过程表征微生物1,4-丁二醇产量的扩大相关效果。由于代谢网络约束,在氧气有限的微生物条件下发生1,4-丁二醇形成,这可能在大规模的生物反应器中难以实现。本研究的目的是评估基材和氧可用性影响生产率的程度。发现,基质的基材上的基材比在底物上的底物上较高,底物特异性产品产量和生产率较高。此外,微生物条件内的氧气供应水平揭示了对产品和副产物的强烈影响。在强氧缺失下,将近30%的消耗碳转化为1,4-丁二醇,而氧气供应的增加导致1,4-丁二醇减少77%。引人注目的是,增加氧可用性导致主要副产物的醋酸主要增加以及加倍的二氧化碳形成。该研究提供了明确的证据表明微生物生物处理的扩大构成了大量挑战。虽然产品形成严格需要氧气,但数据明确证明厌氧和特别是有氧病症的术语强烈干扰1,4-丁二醇的生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号