...
首页> 外文期刊>Bulletin of earthquake engineering >Seismic behaviour of eccentrically compressed steel-box bridge-pier columns with embedded energy-dissipating shell plates
【24h】

Seismic behaviour of eccentrically compressed steel-box bridge-pier columns with embedded energy-dissipating shell plates

机译:偏心压缩钢箱桥柱围栏的地震行为嵌入式能量消散壳板

获取原文
获取原文并翻译 | 示例
           

摘要

A novel steel-box bridge-pier column with embedded replaceable energy-dissipating shell plates is proposed herein. The seismic performance of this new steel bridge column was investigated experimentally on eight unique steel-box pier samples with varying geometric and material features under vertical eccentric and horizontal cyclic loads. The experimental results were compared with numerical simulation results to validate the accuracy of the finite element method. The effects of fan-shaped stiffener spacing, eccentricity of vertical loading, ratio of axial compression, thickness of embedded shell, ratio of slenderness, and material strength of embedded shell plates and box wall plates on the seismic behaviour of the new steel-box bridge-piers are discussed. Results showed that installation of embedded energy-dissipating shell plates improved the ductility and strength capacity of the new type of steel bridge piers. The recommended fan-shaped stiffener spacing was one-third to half of the box cross-sectional dimension. If the spacing of the fan-shaped stiffeners is extremely small, the deformation of the embedded energy-consuming shells will be limited, resulting in a small fracture displacement of the specimen, accelerated stiffness degradation, and reduced deformation capacity and ductility. The eccentricity of the vertical loading results in asymmetrical skeleton curves. The decrease in axial compression ratio or the increase in embedded shell thickness can lead to a higher ultimate capacity and smoother post-yield hysteretic curve for the specimens, thereby affording better seismic performances. The increase in slenderness ratio can engender a reduced initial stiffness, ultimate load, and envelope area of the hysteresis loop for the specimen, thereby yielding a worse seismic performance. The increase in material strength in the box wall plates or embedded shell plates can yield a larger ultimate displacement and smaller stiffness degradation for the specimen, thereby suggesting an enhanced energy-consumption capacity and improved seismic performance for this new type of box bridge pier.
机译:本文提出了一种具有嵌入式可更换能量消散壳板的新型钢箱桥墩柱。通过在八个独特的钢箱墩样品上实验研究了这一新的钢桥柱的地震性能,在垂直偏心和水平循环负载下不同的几何和材料特征。将实验结果与数值模拟结果进行比较,以验证有限元方法的准确性。扇形加强筋间距,垂直载荷,轴向压缩偏心,嵌入式壳厚度的比例,嵌入式壳板的厚度和材料强度的厚度,盒壁板上的新型钢箱桥的地震行为 - 讨论了穷人。结果表明,嵌入式能量消散壳板的安装改善了新型钢桥墩的延展性和强度能力。推荐的扇形加强筋间距是盒子横截面尺寸的三分之一至一半。如果扇形加强件的间距极小,则嵌入的能量消耗壳的变形将受到限制,导致样品的小骨折位移,加速刚度降解和降低的变形能力和延展性。垂直装载的偏心率导致不对称的骨架曲线。轴向压缩比的降低或嵌入壳厚度的增加可以导致标本的较高的最终能力和产前后产率滞后曲线,从而提供更好的地震性能。细长比的增加可以从标本的滞后回路的滞后环的降低的初始刚度,终极载荷和包络区域产生降低,从而产生更差的地震性能。箱壁板或嵌入式壳板中的材料强度的增加可以产生更大的最终位移和样品的较小刚度降低,从而提高了这种新型箱桥码头的能耗和改善的地震性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号