...
首页> 外文期刊>Cytoskeleton >Computer simulation of flagellar movement X: Doublet pair splitting and bend propagation modeled using stochastic dynein kinetics
【24h】

Computer simulation of flagellar movement X: Doublet pair splitting and bend propagation modeled using stochastic dynein kinetics

机译:鞭毛运动X的计算机模拟:双态对分裂和弯曲传播,使用随机动力动力学建模

获取原文
获取原文并翻译 | 示例
           

摘要

Experimental observations on cyclic splitting and bending by a flagellar doublet pair are modeled using forces obtained from a model for dynein mechanochemistry, based on ideas introduced by Andrew Huxley and Terrill Hill and extended previously for modeling flagellar movements. The new feature is elastic attachment of dynein to the A doublet, which allows movement perpendicular to the A doublet and provides adhesive force that can strain attached dyneins. This additional strain influences the kinetics of dynein attachment and detachment. Computations using this dynein model demonstrate that very simple and realistic ideas about dynein mechanochemistry are sufficient for explaining the separation and reattachment seen experimentally with flagellar doublet pairs. Additional simulations were performed after adding a "super-adhesion" elasticity. This elastic component is intended to mimic interdoublet connections, normally present in an intact axoneme, that would prevent visible splitting but allow sufficient separation to cause dynein detachment and cessation of shear force generation. This is the situation envisioned by Lindemann's "geometric clutch" hypothesis for control of dynein function in flagella and cilia. The simulations show abrupt disengagement of the "clutch" at one end of a bend, and abrupt reengagement of the "clutch" at the other end of a bend, ensuring that active sliding is only operating where it will cause bend propagation from base to tip.
机译:根据从安德鲁·赫x黎(Andrew Huxley)和特里尔·希尔(Terrill Hill)引入并先前扩展用于鞭毛运动建模的思想,使用从动力蛋白机械化学模型获得的力来模拟鞭毛对的周期性分裂和弯曲的实验观察结果。新功能是将达因胶弹性附着在A双重胶上,从而允许垂直于A双重胶的运动,并提供可能使附着的达因胶变形的粘合力。这种额外的应变影响动力蛋白附着和分离的动力学。使用该动力蛋白模型进行的计算表明,关于动力蛋白机械化学的非常简单和现实的想法足以解释用鞭毛二重态对进行的分离和重新附着。添加“超粘”弹性后,进行了其他模拟。该弹性部件旨在模仿通常存在于完整轴突中的双联连接,这将防止可见的分裂,但允许足够的分离以导致达因蛋白脱离并停止产生剪切力。这是Lindemann的“几何离合器”假说在鞭毛和纤毛中控制达因功能的设想。仿真显示弯头一端的“离合器”突然脱离,而弯头另一端的“离合器”突然重新啮合,从而确保主动滑动仅在会导致弯头从基部传播到尖端的情况下进行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号