...
首页> 外文期刊>Biofuels, bioproducts & biorefining: Biofpr >Life cycle analysis of corn-stover-derived polymer-grade l-lactic acid and ethyl lactate: greenhouse gas emissions and fossil energy consumption
【24h】

Life cycle analysis of corn-stover-derived polymer-grade l-lactic acid and ethyl lactate: greenhouse gas emissions and fossil energy consumption

机译:玉米渣衍生聚合物级L-乳酸和乳酸乙酯的生命周期分析:温室气体排放和化石能耗

获取原文
获取原文并翻译 | 示例
           

摘要

Co-production of high-value chemicals with biofuels could improve the economic viability of biorefineries while reducing biofuel life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC). Polymer-grade lactic acid (PGLA) is a high-potential bioproduct currently produced from first-generation feedstocks. Opportunity exists to enhance its environmental performance using cellulosic feedstocks. Moreover, ethyl lactate can be used as a functional replacement for high-volume, energy-intensive, and emissions-intensive petroleum-derived chemicals such as N-methyl-2-pyrrolidone and ethyl acetate. Based on material and energy flows from Aspen Plus process models that we incorporated into the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model's bioproducts module, we developed life-cycle GHG emissions and FEC estimates for ethyl lactate and PGLA produced from corn stover. We compared these results to those for fossil-fuel-derived counterparts, identified key LCA drivers, and explored the impact of end-of-life assumptions on LCA results. Irrespective of the end-of-life assumption, all the bioproducts demonstrated lower life-cycle FEC (10-72%) and GHG emissions (23-90%) than fossil-derived compounds for which they could serve as a functional replacement. Additionally, we reviewed the role of LCA in three major bioproduct sustainability certification schemes (the BioPreferred Program, the Roundtable on Sustainable Biomaterials, and International Sustainability and Carbon Certification Plus). None mandate an LCA of the bioproduct to assess whether, across the supply chain, these products offer environmental benefits as compared to conventional chemicals they could displace either directly or functionally. (c) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd
机译:与生物燃料的高价值化学品的共同生产可以改善生物料理的经济可行性,同时减少生物燃料生命周期温室气体(GHG)排放和化石能源消耗(FEC)。聚合物级乳酸(PGLA)是目前由第一代原料生产的高潜能生物处理。有机会通过纤维素原料提高其环境性能。此外,乳酸乙酯可用作大容量,能量密集型和排放 - 密集型石油衍生的化学品如N-甲基-2-吡咯烷酮和乙酸乙酯的功能替代品。基于来自Aspen Plus的材料和能量流程,我们将在运输(迎接)的流量(迎接)的生物制造模块中纳入温室气体,监管排放和能源使用,我们开发了生命周期的温室气体排放量和FEC估计的乳酸乙酯和PGLA产生的估计来自玉米秸秆。我们将这些结果与化石燃料衍生的对应者进行了比较,确定了关键的LCA驱动程序,并探讨了寿命终止假设对LCA结果的影响。无论寿命结束的假设如何,所有生物化学键都表现出比化石衍生的化合物更低的生命周期FEC(10-72%)和温室气体排放(23-90%),它们可以作为功能替代品。此外,我们审查了LCA在三个主要的生物中产阶级可持续性认证计划中的作用(生物参与计划,可持续生物材料的圆桌会议,以及国际可持续性和碳认证加)。无授权生物过程的LCA,以评估这些产品是否与常规化学品相比,这些产品提供环境效益,它们可以直接或功能均衡。 (c)2016化学工业协会和约翰瓦里和儿子有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号