...
首页> 外文期刊>Computers in Biology and Medicine >Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue
【24h】

Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue

机译:生物组织中电生理学和离子运输的涂片多尺度有限元模型

获取原文
获取原文并翻译 | 示例
           

摘要

Basic functions of living organisms are governed by the nervous system through bidirectional signals transmitted from the brain to neural networks. These signals are similar to electrical waves. In electrophysiology the goal is to study the electrical properties of biological cells and tissues, and the transmission of signals. From a physics perspective, there exists a field of electrical potential within the living body, the nervous system, extracellular space and cells. Electrophysiological problems can be investigated experimentally and also theoretically by developing appropriate mathematical or computational models. Due to the enormous complexity of biological systems, it would be almost impossible to establish a detailed computational model of the electrical field, even for only a single organ (e.g. heart), including the entirety of cells comprising the neural network. In order to make computational models feasible for practical applications, we here introduce the concept of smeared fields, which represents a generalization of the previously formulated multiscale smeared methodology for mass transport in blood vessels, lymph, and tissue. We demonstrate the accuracy of the smeared finite element computational models for the electric field in numerical examples. The electrical field is further coupled with ionic mass transport within tissue composed of interstitial spaces extracellularly and by cytoplasm and organelles intracellularly. The proposed methodology, which couples electrophysiology and molecular ionic transport, is applicable to a variety of biological systems.
机译:生物体的基本功能由神经系统通过从大脑传输到神经网络的双向信号来控制。这些信号类似于电波。在电生理学中,目标是研究生物细胞和组织的电性能,以及信号的传输。从物理角度来看,存在在生物体内,神经系统,细胞外空间和细胞内的电势领域。通过开发适当的数学或计算模型,可以通过实验和理论地研究电生理问题。由于生物系统的巨大复杂性,即使仅针对单个器官(例如心脏),几乎不可能建立电场的详细计算模型,包括包括神经网络的整个单元。为了使计算模型可用于实际应用,我们在这里介绍了涂抹场的概念,这代表了先前配制的多尺度涂抹方法的概念,用于血管,淋巴和组织中的大规模运输。我们展示了数值示例中电场的涂抹有限元计算模型的准确性。电场还与由细胞间隙组成的组织内的离子质量传输,细胞质和细胞膜细胞内细胞膜和细胞器。将电生理学和分子离子转运耦合的所提出的方法适用于各种生物系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号