...
首页> 外文期刊>Contributions to Mineralogy and Petrology >Fluid-rock reactions in the 1.3Ga siderite carbonatite of the GrOnnedal-ika alkaline complex, Southwest Greenland
【24h】

Fluid-rock reactions in the 1.3Ga siderite carbonatite of the GrOnnedal-ika alkaline complex, Southwest Greenland

机译:1.3Ga含碳酸盐的流体摇滚反应,格林兰西南部的格伦德 - IKA碱性复合物

获取原文
获取原文并翻译 | 示例
           

摘要

Petrogenetic studies of carbonatites are challenging, because carbonatite mineral assemblages and mineral chemistry typically reflect both variable pressure-temperature conditions during crystallization and fluid-rock interaction caused by magmatic-hydrothermal fluids. However, this complexity results in recognizable alteration textures and trace-element signatures in the mineral archive that can be used to reconstruct the magmatic evolution and fluid-rock interaction history of carbonatites. We present new LA-ICP-MS trace-element data for magnetite, calcite, siderite, and ankerite-dolomite-kutnohorite from the iron-rich carbonatites of the 1.3Ga GrOnnedal-ika alkaline complex, Southwest Greenland. We use these data, in combination with detailed cathodoluminescence imaging, to identify magmatic and secondary geochemical fingerprints preserved in these minerals. The chemical and textural gradients show that a 55m-thick basaltic dike that crosscuts the carbonatite intrusion has acted as the pathway for hydrothermal fluids enriched in F and CO2, which have caused mobilization of the LREEs, Nb, Ta, Ba, Sr, Mn, and P. These fluids reacted with and altered the composition of the surrounding carbonatites up to a distance of 40m from the dike contact and caused formation of magnetite through oxidation of siderite. Our results can be used for discrimination between primary magmatic minerals and later alteration-related assemblages in carbonatites in general, which can lead to a better understanding of how these rare rocks are formed. Our data provide evidence that siderite-bearing ferrocarbonatites can form during late stages of calciocarbonatitic magma evolution.
机译:碳酸盐肌的化学性研究是挑战性的,因为碳酸石矿物组装和矿物化学通常在结晶期间反映可变压力 - 温度条件,并且由岩浆 - 热热流体引起的结晶和流体岩石相互作用。然而,这种复杂性导致矿物档案中可识别的改变纹理和痕量元素签名,可用于重建碳酸盐岩的岩石演化和流体岩石相互作用史。我们向格陵兰西南部1.3Ga格伦醛碱综合体的铁富含铁碳酸铁矿石呈现出磁铁矿,方解石,泥土和Ankerite-dolomite-Kutnohorite的新型La-ICP-MS跟踪元素数据。我们将这些数据与详细的阴极发光成像组合使用,识别在这些矿物质中保存的岩浆和次要地球化学指纹。化学和纹理梯度表明,横切碳酸盐石入侵的55米厚的玄武岩堤防被用作富含F和CO2的水热流体的途径,这导致了雷德雷斯,Nb,Ta,Ba,Sr,Mn,Mn,和P.这些流体与堤防接触的距离与距离的距离改变为40米的距离,并通过氧化物氧化形成磁铁矿的距离。我们的结果可用于碳酸石中的原发性岩石矿物和后期改变相关组件的歧视,这可能导致更好地了解这些稀有岩石的形成方式。我们的数据提供了证据表明,在CalciocaronatiTitic Magma演化的后期阶段可以形成恒星的铁偶能。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号