首页> 外文期刊>Acta biomaterialia >Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques
【24h】

Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques

机译:低污垢和超级污垢表面上的蛋白质吸附测量:表面表征技术的关键比较

获取原文
获取原文并翻译 | 示例
           

摘要

Ultralow protein fouling behavior is a common target for new high-performance materials. Ultralow fouling is often defined based on the amount of irreversibly adsorbed protein (< 5 ng cm(-2)) measured by a surface ensemble averaging method. However, protein adsorption at solid interfaces is a dynamic process involving multiple steps, which may include adsorption, desorption, and irreversible protein denaturation. In order to better optimize the performance of antifouling surfaces, it is imperative to fully understand how proteins interact with surfaces, including kinetics of adsorption and desorption, conformation, stability, and amount of adsorbed proteins. Defining ultralow fouling surfaces based on a measurement at or near the limit of detection of a surface-averaged measurement may not capture all of this behavior. Single-molecule microscopy techniques can resolve individual protein-surface interactions with high temporal and spatial resolution. This information can be used to tune the properties of surfaces to better resist protein adsorption. In this work, we demonstrate how combining surface plasmon resonance, X-ray photoelectron spectroscopy, atomic force microscopy, and single-molecule localization microscopy provides a more complete picture of protein adsorption on low fouling and ultralow fouling polyelectrolyte multilayer and polymer brush surfaces, over different regimes of protein concentration. In this case, comparing the surfaces using surface plasmon resonance alone is insufficient to rank their resistance to protein adsorption. Our results suggest a revision of the accepted definition of ultralow fouling surfaces is timely: with the advent of time-resolved studies of protein adsorption kinetics at the singlemolecule level, it is neither necessary nor sufficient to rely on a surface averaging techniques to qualify ultralow fouling surfaces. Since protein adsorption is a dynamic process, understanding how surface properties affect the kinetics of protein adsorption will enable the design of future generations of advanced antifouling materials.
机译:UltraLow蛋白质污垢行为是新型高性能材料的常见目标。超级污垢通常基于通过表面整体平均法测量的不可逆吸附的蛋白质(<5 ng cm(-2))的量来定义。然而,固体界面的蛋白质吸附是涉及多个步骤的动态过程,其可包括吸附,解吸和不可逆蛋白质变性。为了更好地优化防污表面的性能,必须充分了解蛋白质如何与表面相互作用,包括吸附和解吸,构象,稳定性和吸附蛋白的量的动力学。基于检测极限的测量限定超射击污垢表面,或接近表面平均测量极限的测量可能不会捕获所有这些行为。单分子显微镜技术可以解决与高时和空间分辨率的单独蛋白质表面相互作用。该信息可用于调整表面的性质以更好地抵抗蛋白质吸附。在这项工作中,我们证明了结合表面等离子体共振,X射线光电子体光谱,原子力显微镜和单分子定位显微镜在低污垢和超级污垢聚电解质多层和聚合物刷表面上提供更完整的蛋白质吸附图像。不同的蛋白质浓度制度。在这种情况下,使用表面等离子体共振的表面比较表面不足以对它们对蛋白质吸附的抵抗力进行排。我们的成果提出了对超级污垢表面的接受定义的修订及时:随着蛋白质吸附动力学的时间分辨研究的出现,既不是必要的也不足以依赖于表面平均技术来限定超级污垢表面。由于蛋白质吸附是一种动态过程,了解表面特性如何影响蛋白质吸附的动力学将使未来几代高级防污材料的设计能够设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号