首页> 外文期刊>Acta biomaterialia >Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants
【24h】

Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants

机译:激光结构细菌纳米纤维素水凝胶支持生长和化合物细胞的分化,并显示潜在的软骨植入物

获取原文
获取原文并翻译 | 示例
           

摘要

The small size and heterogeneity of the pores in bacterial nanocellulose (BNC) hydrogels limit the ingrowth of cells and their use as tissue-engineered implant materials. The use of placeholders during BNC biosynthesis or post-processing steps such as (touch-free) laser perforation can overcome this limitation. Since three-dimensionally arranged channels may be required for homogeneous and functional seeding, three-dimensional (3-D) laser perforation of never-dried BNC hydrogels was performed. Never-dried BNC hydrogels were produced in different shapes by: (i) the cultivation of Gluconacetobacter xylinus (DSM 14666; synonym Komagataeibacter xylinus) in nutrient medium; (ii) the removal of bacterial residues/media components (0.1 M NaOH; 30 min; 100 C) and repeated washing (deionized water; pH 5.8); (iii) the unidirectional or 3-D laser perforation and cutting (pulsed CO2 Rofin SC ×10 laser; 220 μm channel diameter); and (iv) the final autoclaving (2 M NaOH; 121 C; 20 min) and washing (pyrogen-free water). In comparison to unmodified BNC, unidirectionally perforated - and particularly 3-D-perforated - BNC allowed ingrowth into and movement of vital bovine/human chondrocytes throughout the BNC nanofiber network. Laser perforation caused limited structural modifications (i.e. fiber or globular aggregates), but no chemical modifications, as indicated by Fourier transform infrared spectroscopy, X-ray photoelectron scattering and viability tests. Pre-cultured human chondrocytes seeding the surface/channels of laser-perforated BNC expressed cartilage-specific matrix products, indicating chondrocyte differentiation. 3-D-perforated BNC showed compressive strength comparable to that of unmodified samples. Unidirectionally or 3-D-perforated BNC shows high biocompatibility and provides short diffusion distances for nutrients and extracellular matrix components. Also, the resulting channels support migration into the BNC, matrix production and phenotypic stabilization of chondrocytes. It may thus be suitable for in vivo application, e.g. as a cartilage replacement material.
机译:细菌纳米纤维素(BNC)水凝胶中孔的小尺寸和异质性限制了细胞的发光及其用作组织工程植入物材料。在BNC生物合成期间或诸如(触摸)激光穿孔的后处理步骤期间使用占位符可以克服这种限制。由于可以需要三维排列的通道来进行均匀和功能播种,因此进行从未干燥的BNC水凝胶的三维(3-D)激光穿孔。以不同的形状产生切勿干燥的BNC水凝胶:(i)植物培养基中葡聚糖杆菌(DSM 14666;代名词Komagataibacter Xylinus)的培养; (ii)除去细菌残留物/培养基组分(0.1米NaOH; 30分钟; 100℃)并反复洗涤(去离子水; pH 5.8); (iii)单向或三维激光穿孔和切割(脉冲CO2 Rofin Sc×10激光;220μm沟道直径); (iv)最终的高压灭菌(2 m NaOH; 121℃; 20分钟)和洗涤(无热原水)。与未经修改的BNC相比,单向穿孔 - 特别是3-D-穿孔 - BNC允许在整个BNC纳米恐怖网络中产生生命牛/人软骨细胞的成长和运动。激光穿孔引起有限的结构修饰(即纤维或球状聚集体),但没有化学修饰,如傅里叶变换红外光谱,X射线光电子散射和活力测试所示。预先培养的人软骨细胞播种激光穿孔的BNC的表面/通道表达了软骨特异性基质产品,表明软骨细胞分化。 3-D-穿孔的BNC显示出与未修饰样品相当的抗压强度。单向或三维穿孔BNC显示出高生物相容性,为营养素和细胞外基质组分提供短扩散距离。此外,所得通道支持迁移到BNC,基质产生和软骨细胞的表型稳定化。因此,它可以适用于体内应用,例如体内应用。作为软骨更换材料。

著录项

  • 来源
    《Acta biomaterialia》 |2014年第3期|共13页
  • 作者单位

    Jenpolymer Materials Ltd and Co. KG Wildenbruchstra?e 15 07745 Jena Germany Department of;

    Experimental Rheumatology Unit Department of Orthopedics Jena University Hospital Jena;

    TransTissue Technologies GmbH Charitéplatz 1/Virchowweg 11 10117 Berlin Germany;

    Günter-K?hler-Institut für Fügetechnik und Werkstoffprüfung GmbH Otto-Schott-Stra?e 13 07745 Jena;

    Fraunhofer Institute for Mechanics of Materials IWM W?hlerstra?e 11 79108 Freiburg Germany;

    Günter-K?hler-Institut für Fügetechnik und Werkstoffprüfung GmbH Otto-Schott-Stra?e 13 07745 Jena;

    Fraunhofer Institute for Mechanics of Materials IWM W?hlerstra?e 11 79108 Freiburg Germany;

    TransTissue Technologies GmbH Charitéplatz 1/Virchowweg 11 10117 Berlin Germany;

    Jenpolymer Materials Ltd and Co. KG Wildenbruchstra?e 15 07745 Jena Germany;

    Experimental Rheumatology Unit Department of Orthopedics Jena University Hospital Jena;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 普通生物学;
  • 关键词

    Bacterial nanocellulose; Cartilage implant; Chondrocyte ingrowth/differentiation; Laser structuring; Microbial cellulose;

    机译:细菌纳米纤维素;软骨植入物;软骨细胞增生/分化;激光结构化;微生物纤维素;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号