首页> 外文期刊>Acta biomaterialia >Hierarchical structure and compressive deformation mechanisms of bighorn sheep ( Ovis canadensis ) horn
【24h】

Hierarchical structure and compressive deformation mechanisms of bighorn sheep ( Ovis canadensis ) horn

机译:大角羊(卵巢Canadensis)喇叭的分层结构和压缩变形机制

获取原文
获取原文并翻译 | 示例
           

摘要

Graphical abstract Display Omitted Abstract Bighorn sheep ( Ovis canadensis ) rams hurl themselves at each other at speeds of ~9?m/s (20?mph) to fight for dominance and mating rights. This necessitates impact resistance and energy absorption mechanisms, which stem from material-structure components in horns. In this study, the material hierarchical structure as well as correlations between the structure and mechanical properties are investigated. The major microstructural elements of horns are found as tubules and cell lamellae, which are oriented with (~30?) angle with respect to each other. The cell lamellae contain keratin cells, in the shape of pancakes, possessing an average thickness of ~2?μm and diameter of ~20–30?μm. The morphology of keratin cells reveals the presence of keratin fibers and intermediate filaments with diameter of ~200?nm and ~12?nm, respectively, parallel to the cell surface. Quasi-static and high strain rate impact experiments, in different loading directions and hydration states, revealed a strong strain rate dependency for both dried and hydrated conditions. A strong anisotropy behavior was observed under impact for the dried state. The results show that the radial direction is the most preferable impact orientation because of its superior energy absorption. Detailed failure mechanisms under the aforementioned conditions are examined by bar impact recovery experiments. Shear banding, buckling of cell lamellae, and delamination in longitudinal and transverse direction were identified as the cause for strain softening under high strain rate impact. While collapse of tubules occurs in both quasi-static and impact tests, in radial and transverse directions, the former leads to more energy absorption and impact resistance. Statement of Significance Bighorn sheep ( Ovis canadensis ) horns show remarkable impact resistance and energy absorption when undergoing high speed impact during the intraspecific fights. The present work illustrates the hierarchical structure of bighorn sheep horn at different length scales and investigates the energy dissipation mechanisms under different strain rates, loading orientations and hydration states. These results demonstrate how horn dissipates large amounts of energy, thus provide a new path to fabricate energy absorbent and crashworthiness engineering materials.
机译:图形抽象显示省略了抽象大角羊(Ovis Canadensis)Rams在〜9?M / s(20?MPH)的速度下互相争夺统治和交配权。这需要抗冲击性和能量吸收机制,其源于喇叭中的材料结构组分。在该研究中,研究了材料层次结构以及结构与机械性能之间的相关性。角的主要微观结构元素被发现为小管和细胞薄片,其与彼此相对于(〜30Ω)角度定向。细胞薄膜含有角蛋白细胞,薄煎饼形状,具有平均厚度为约2Ω·μm和直径为〜20-30ΩΩμm。角蛋白细胞的形态揭示了角蛋白纤维的存在和直径为〜200μm和〜12?nm的中间长丝,平行于细胞表面。在不同负载方向和水合态的准静态和高应变率冲击实验揭示了干燥和水合条件的强应变率依赖性。在干燥状态的影响下观察到强烈的各向异性行为。结果表明,由于其优异的能量吸收,径向是最优选的冲击方向。通过Bar Impact Recovery实验检查上述条件下的详细失效机制。剪切条带,屈曲的细胞薄片,纵向和横向的分层被鉴定为高应变率冲击下应变软化的原因。虽然管管的崩溃发生在准静态和冲击试验中,但是在径向和横向方向上,前者导致更能的能量吸收和抗冲击性。重要性大角羊(OVIN Canadensis)喇叭显示出在内部争夺期间在高速冲击时显示出显着的抗冲击性和能量吸收。本作者说明了不同长度尺度的大角羊角的层次结构,并研究了不同应变速率下的能量耗散机制,负载取向和水合态。这些结果表明,喇叭如何消散大量能量,因此提供了制造能量吸收性和耐火性工程材料的新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号