首页> 外文期刊>Biosystems Engineering >Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. (Special Issue: Sensing technologies for sustainable agriculture.)
【24h】

Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. (Special Issue: Sensing technologies for sustainable agriculture.)

机译:精准农业遥感二十五年:主要进展和仍然存在的知识空白。 (特刊:可持续农业的传感技术。)

获取原文
获取原文并翻译 | 示例
           

摘要

Precision agriculture dates back to the middle of the 1980's. Remote sensing applications in precision agriculture began with sensors for soil organic matter, and have quickly diversified to include satellite, aerial, and hand held or tractor mounted sensors. Wavelengths of electromagnetic radiation initially focused on a few key visible or near infrared bands. Today, electromagnetic wavelengths in use range from the ultraviolet to microwave portions of the spectrum, enabling advanced applications such as light detection and ranging (LiDAR), fluorescence spectroscopy, and thermal spectroscopy, along with more traditional applications in the visible and near infrared portions of the spectrum. Spectral bandwidth has decreased dramatically with the advent of hyperspectral remote sensing, allowing improved analysis of specific compounds, molecular interactions, crop stress, and crop biophysical or biochemical characteristics. A variety of spectral indices now exist for various precision agriculture applications, rather than a focus on only normalised difference vegetation indices. Spatial resolution of aerial and satellite remote sensing imagery has improved from 100's of m to sub-metre accuracy, allowing evaluation of soil and crop properties at fine spatial resolution at the expense of increased data storage and processing requirements. Temporal frequency of remote sensing imagery has also improved dramatically. At present there is considerable interest in collecting remote sensing data at multiple times in order to conduct near real time soil, crop and pest management.
机译:精准农业的历史可以追溯到1980年代中期。精密农业中的遥感应用始于土壤有机质传感器,并迅速发展到包括卫星,空中,手持或拖拉机安装传感器。电磁辐射的波长最初集中在几个关键的可见或近红外波段。如今,电磁波长的使用范围从光谱的紫外到微波部分,可实现光检测和测距(LiDAR),荧光光谱和热光谱等高级应用,以及在可见光和近红外部分的更传统的应用。频谱。随着高光谱遥感技术的出现,光谱带宽已大大降低,从而可以改善对特定化合物,分子相互作用,作物胁迫以及作物生物物理或生化特性的分析。现在,各种光谱指数可用于各种精确农业应用,而不是仅关注归一化差异植被指数。航空和卫星遥感影像的空间分辨率已经从100微米提高到了亚米,从而可以以精细的空间分辨率评估土壤和作物的特性,但以增加的数据存储和处理需求为代价。遥感图像的时间频率也已大大提高。当前,为了进行近乎实时的土壤,作物和害虫管理,多次收集遥感数据引起了极大的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号