...
首页> 外文期刊>Acta biomaterialia >Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues
【24h】

Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues

机译:偏振空间域成像(PSFDI)与双轴机械检测系统集成,以定量柔软胶原组织中负载依赖性胶原型架构

获取原文
获取原文并翻译 | 示例
           

摘要

Collagen fiber networks provide the structural strength of tissues, such as tendons, skin and arteries. Quantifying the fiber architecture in response to mechanical loads is essential towards a better understanding of the tissue-level mechanical behaviors, especially in assessing disease-driven functional changes. To enable novel investigations into these load-dependent fiber structures, a polarized spatial frequency domain imaging (pSFDI) device was developed and, for the first time, integrated with a biaxial mechanical testing system. The integrated instrument is capable of a wide-field quantification of the fiber orientation and the degree of optical anisotropy (DOA), representing the local degree of fiber alignment. The opto-mechanical instrument's performance was assessed through uniaxial loading on tendon tissues with known collagen fiber microstructures. Our results revealed that the bulk fiber orientation angle of the tendon tissue changed minimally with loading (median +/- 0.5*IQR of 52.7 degrees +/- 3.3 degrees and 51.9 degrees +/- 3.3 degrees under 0 and 3% longitudinal strains, respectively), whereas on a micro-scale, the fibers became better aligned with the direction of loading: the DOA (mean +/- SD) increased from 0.149 +/- 0.032 to 0.198 +/- 0.056 under 0 and 3% longitudinal strains, respectively, p < 0.001. The integrated instrument was further applied to study two representative mitral valve anterior leaflet (MVAL) tissues subjected to various biaxial loads. The fiber orientations within these representative MVAL tissue specimens demonstrated noticeable heterogeneity, with the local fiber orientations dependent upon the sample, the spatial and transmural locations, and the applied loading. Our results also showed that fibers were generally better aligned under equibiaxial (DOA = 0.089 +/- 0.036) and circumferentially-dominant loading (DOA = 0.086 +/- 0.037) than under the radially-dominant loading (DOA = 0.077 +/- 0.034), indicating circumferential predisposition. These novel findings exemplify a deeper understanding of the load-dependent collagen fiber microstructures obtained through the use of the integrated opto-mechanical instrument.
机译:胶原纤维网络提供组织的结构强度,例如肌腱,皮肤和动脉。响应机械负载量化光纤架构对于更好地了解组织级机械行为至关重要,特别是在评估疾病驱动的功能变化方面。为了使新的调查能够进入这些依赖性光纤结构,开发了偏振的空间域成像(PSFDI)装置,并首次与双轴机械测试系统集成。综合仪器能够广泛定量光纤取向和光学各向异性(DOA)的程度,代表局部纤维对准程度。通过具有已知胶原纤维微结构的肌腱组织对肌腱组织的单轴载荷来评估光学仪器的性能。我们的研究结果表明,肌腱组织的块状纤维取向角度随着载荷(中位+/- 0.5 * IQR的52.7度+/- 3.3度和51.9度+/- 3.3度分别为0和3%的纵向菌株),而在微尺度上,纤维与装载方向变得更好地对齐:DOA(平均值+/-SD)从0.149 +/- 0.032增加到0.198 +/- 0.056,纵向菌株分别p <0.001。进一步应用综合仪器研究经受各种双轴载荷的两种代表性二尖瓣前叶(MVAL)组织。这些代表性的MVAL组织标本中的纤维取向表明了明显的异质性,局部纤维取向取决于样品,空间和透气位置,以及施加的载荷。我们的研究结果还表明,纤维在偏心(DOA = 0.089 +/- 0.036)下通常更好地对准(DOA = 0.089 +/- 0.036),并且径向优势载荷(DOA = 0.086 +/- 0.037),而不是在径向优势载量下(DOA = 0.077 +/- 0.034 ),表明圆周倾向。这些新发现通过使用集成光机械来举例说明了更深入地理解通过使用集成光机械获得的载荷依赖性胶原纤维微观结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号