...
首页> 外文期刊>Cytoskeleton >Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading
【24h】

Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading

机译:具有滑动径向辐条的鞭毛的有限元模型和Interdoublet链路在稳定的Dynein负载下表现出繁殖波

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract It remains unclear how flagella generate propulsive, oscillatory waveforms. While it is well known that dynein motors, in combination with passive cytoskeletal elements, drive the bending of the axoneme by applying shearing forces and bending moments to microtubule doublets, the origin of rhythmicity is still mysterious. Most conceptual models of flagellar oscillation involve dynein regulation or switching, so that dynein activity first on one side of the axoneme, then the other, drives bending. In contrast, a “viscoelastic flutter” mechanism has recently been proposed, based on a dynamic structural instability. Simple mathematical models of coupled elastic beams in viscous fluid, subjected to steady, axially distributed, dynein forces of sufficient magnitude, can exhibit oscillatory motion without any switching or dynamic regulation. Here we introduce more realistic finite element (FE) models of 6‐doublet and 9‐doublet flagella, with radial spokes and interdoublet links that slide along the central pair or corresponding doublet. These models demonstrate the viscoelastic flutter mechanism. Above a critical force threshold, these models exhibit an abrupt onset of propulsive, wavelike oscillations typical of flutter instability. Changes in the magnitude and spatial distribution of steady dynein force, or to viscous resistance, lead to behavior qualitatively consistent with experimental observations. This study demonstrates the ability of FE models to simulate nonlinear interactions between axonemal components during flagellar beating, and supports the plausibility of viscoelastic flutter as a mechanism of flagellar oscillation.
机译:摘要尚不清楚鞭毛如何产生推进的振荡波形。众所周知,众所周知,Dynein电机与被动细胞骨架元件组合,通过将剪切力和弯曲的时刻施加到微管倍增,仍然是神秘的。最大部分概念模型的鞭毛振荡涉及Dynein调节或切换,使Dynein活动首先在轴突的一侧,然后是另一侧,驱动器弯曲。相反,最近基于动态结构不稳定提出了“粘弹性颤动”机构。简单的数学模型在粘性流体中的耦合弹性梁,经受稳定,轴向分布的,足够幅度的Dynein力,可以在没有任何切换或动态调节的情况下表现出振荡运动。在这里,我们介绍了更现实的有限元(FE)型号的6-Doublet和9-Doublet鞭毛,带有径向辐条和沿着中心对滑动的辐射辐射链接或相应的双重。这些模型展示了粘弹性颤动机构。在临界力阈值之上,这些模型表现出典型的颤动不稳定性的推进性的波动振荡的突然发作。稳定Dynin力或粘性抗性的幅度和空间分布的变化导致与实验观察定性一致的行为。本研究表明Fe模型在鞭毛跳动期间模拟轴突组分之间的非线性相互作用的能力,并支持粘弹性颤动的合理性作为鞭毛振荡的机制。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号