...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Electrochemical CO2 Fixation to α-Methylbenzyl Bromide in Divided Cells with Nonsacrificial Anodes and Aqueous Anolytes
【24h】

Electrochemical CO2 Fixation to α-Methylbenzyl Bromide in Divided Cells with Nonsacrificial Anodes and Aqueous Anolytes

机译:用非扫描阳极和水溶液固定在分割细胞中的α-甲基苄基溴的电化学二氧化碳固定

获取原文
获取原文并翻译 | 示例
           

摘要

Electrocarboxylation of organic halides represents a CO2 utilization strategy and a green alternative for the synthesis of many industrially relevant carboxylic acids. However, current electrocarboxylation methods rely on the utilization of sacrificial metal anodes, which are not sustainable, require high voltages, and complicate the understanding of the reaction mechanism. Here, we demonstrate the feasibility of performing electrocarboxylation reactions in divided cells with aqueous anolytes and nonsacrificial anodes, thereby eliminating the reliance on sacrificial anodes and opening the door for coupling of this important reduction process with various electrooxidation reactions requiring aqueous electrolytes. Specifically, we report a detailed study of electrocarboxylation of (1-bromoethyl)benzene at a silver cathode coupled with an oxygen evolution reaction at a platinum anode in a divided cell with organic and aqueous compartments separated by ion-exchange membranes of different types. We examine how operating parameters, including membrane type, applied potential, substrate concentration, electrolyte, and temperature affect the overall process and the reaction product distribution. Based on the extensive experimental results, we propose a detailed mechanism for major electrochemical product formation accounting for both aprotic and protic environments. Systematic analysis and mechanistic insights presented in this study are expected to enable a rational catalyst, electrolyte, and system design tailored to electroorganic CO2 fixation with different organic substrates to obtain industrially relevant carboxylic acids at practical potentials and currents.
机译:有机卤化物的电羧化代表CO 2利用策略和用于合成许多工业相关的羧酸的绿色替代品。然而,电流电羧化方法依赖于不可持续的牺牲金属阳极的利用,需要高电压,并使对反应机制的理解复杂化。这里,我们证明了用含水阳极水溶液和非阳性阳极进行分割细胞中的电羧化反应的可行性,从而消除了对牺牲阳极的依赖性,并用需要水性电解质的各种电氧化反应耦合该门的门。具体地,我们报告了(1-溴乙基)苯在银阴极上的电羧化的详细研究,其与铂阳极在分开的电池中的氧气进化反应,其中包含不同类型的离子交换膜分离的有机和水室。我们检查操作参数,包括膜型,施加电位,底物浓度,电解质和温度如何影响整体过程和反应产物分布。基于广泛的实验结果,我们提出了一种具有非质子和质谱环境的主要电化学产品形成核算的详细机制。本研究中提出的系统分析和机械洞察力预期能够通过不同的有机基材定制的理性催化剂,电解质和系统设计,以在实际电位和电流下在工业上相关的羧酸获得工业上相关的羧酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号