...
首页> 外文期刊>Crystal growth & design >Cocrystal or Salt: Solid State-Controlled Iodine Shift in Crystalline Halogen-Bonded Systems
【24h】

Cocrystal or Salt: Solid State-Controlled Iodine Shift in Crystalline Halogen-Bonded Systems

机译:共晶体或盐:晶体卤素键合系统中的固态控制的碘移位

获取原文
获取原文并翻译 | 示例
           

摘要

The distinction between cocrystals and salts is usually investigated in hydrogen-bonded systems as A-H center dot center dot center dot B reversible arrow [A]-center dot center dot center dot[H-B](+), where the position of the hydrogen atom actually defines the ionicity of the complex. The same distinction, but in halogen-bonded systems, is addressed here, in complexes formed out of N-iodoimide derivatives as halogen bond donors, and pyridines as halogen-bond acceptors, anticipating that the position of the iodine atom in these A-I center dot center dot center dot B reversible arrow [A](-)center dot center dot center dot[I-B](+) systems will also define their degree of ionicity. We show that the crystalline halogen-bonded complexes of N-iodosuccinimide (NIS) with pyridine, 4-methylpyridine, and 4-dimethylaminopyridine can be described as close-to-neutral cocrystals while the crystalline halogen-bonded complex of N-iodosaccharin (NISac) with 4-dimethylaminopyridine adopts a close-to-ionic structure. Theoretical calculations were performed (i) in gas phase on isolated NIS center dot center dot center dot Py-NMe2 and NISac center dot center dot center dot Py-NMe2 complexes, and (ii) on the periodic crystal phases, and combined with the topological analysis of the electron density distribution rho(r). We demonstrate unambiguously that the crystal environment actually plays a crucial role in the stabilization of the close-to-ionic structure of the NISac center dot center dot center dot Py-NMe2 complex. An external homogeneous electric field epsilon applied to this complex (all atoms frozen at the crystalline geometry, except iodine) in either gas phase (epsilon = 3.7 GV m(-1)) or periodic pseudo-isolated configuration (epsilon = 2.8 GV m(-1)) is able to shift the iodine atom at the crystal geometry, miming the polarization effect induced by the local crystal electric field. The strong influence of the crystalline environment on the iodine position is demonstrated by using plane wave DFT periodic calculations on optimized NIS center dot Py-NMe2 and NISac center dot Py-NMe2 crystal structures, as well as by applying this plane wave basis set formalism to a hypothetical solid where the halogen-bonded complexes are pushed apart from each other within a periodic system.
机译:通常在氢键系统中研究共晶与盐之间的区别,例如AH中心点中心点中心点B可逆箭头[A]-中心点中心点中心点[HB](+),其中氢原子的位置实际上是定义络合物的离子性。在由卤素键供体的N-碘酰亚胺衍生物和作为卤素键受体的吡啶形成的络合物中,也解决了相同的区别,但在卤素键合系统中,预期到了这些AI中心点中碘原子的位置中心点中心点B可逆箭头[A](-)中心点中心点中心点[IB](+)系统还将定义其离子度。我们显示N-碘琥珀酰亚胺(NIS)与吡啶,4-甲基吡啶和4-二甲基氨基吡啶的结晶卤素键合络合物可以描述为接近中性的共晶,而N-碘糖精的结晶卤素键合络合物(NISac )与4-二甲基氨基吡啶采用接近离子的结构。理论计算是(i)在气相中对孤立的NIS中心点中心点中心点Py-NMe2和NISac中心点中心点中心点Py-NMe2配合物进行气相计算,以及(ii)在周期晶体相上进行,并与拓扑相结合电子密度分布rho(r)的分析。我们明确地证明,晶体环境实际上在NISac中心点中心点中心点中心点Py-NMe2络合物的近离子结构的稳定化中起着至关重要的作用。在气相(ε= 3.7 GV m(-1))或周期拟隔离构型(ε= 2.8 GV m( -1))能够使碘原子在晶体几何结构上移动,从而消除了由局部晶体电场引起的极化效应。通过在优化的NIS中心点Py-NMe2和NISac中心点Py-NMe2晶体结构上使用平面波DFT周期性计算,以及通过将平面波基组形式应用于,证明了晶体环境对碘位置的强烈影响。一种假设的固体,其中与卤素键合的配合物在周期性系统中彼此推开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号