首页> 外文期刊>Crystal growth & design >Effect of Sulfur Evaporation Rate on Screw Dislocation Driven Growth of MoS2 with High Atomic Step Density
【24h】

Effect of Sulfur Evaporation Rate on Screw Dislocation Driven Growth of MoS2 with High Atomic Step Density

机译:硫蒸发速率对高位阶跃密度的MoS2螺杆位错驱动生长的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We report the sulfur evaporation rate controlled screw dislocation driven growth of two-dimensional MoS2 that contains unprecedented atomic step density. Screw dislocation assisted growth of atomic thin MoS2 on amorphous SiO2 or a crystalline and conducting Si substrate paves the way to form spiral morphology of two-dimensional materials without the need for single crystalline miscut substrates to initiate the line defects. The unique spiral morphology promoted by screw dislocation is typically observed at a high nucleation rate induced by an abrupt increase in sulfur concentration. Screw dislocation assisted spiral MoS2 growth leads to a high step density with an fold increase in the total edge length. Statistical analysis from detailed atomic force microscope phase imaging of flat and spiral MoS2 flakes reveals the linear increase in total edge length from similar to 470 nm to similar to 2325 nm with respect to variation in the number of steps available at the spiral structure in the range of 2-8. High resolution transmission electron microscopy imaging reveals the local atomic structure of the ledge that separates the individual layers in spiral MoS2 structure and aids the development of growth mechanism. The optimized spiral growth of MoS2 provides countless active sites for hydrogen energy generation applications. Hydrogen evolution performance of as-grown MoS2 on p-type Si substrates decorated with high ledge density provides active adsorption sites leading to hydrogen evolution at a lower potential with a higher current density. The developed strategy of increasing the sulfur evaporation rate to induce a spike in the nucleation rate promotes screw dislocation driven growth of MoS2 with spiral morphology. Such sulfur evaporation rate controlled spiral growth is important for surface engineering of two-dimensional materials to harvest the benefits of active edge sites for hydrogen evolution, catalyst, and sensor applications.
机译:我们报告了硫蒸发速率控制螺杆位错驱动二维MoS2的增长,其中包含空前的原子步长密度。螺丝位错辅助了原子薄MoS2在无定形SiO2或晶体和导电Si衬底上的生长,为形成二维材料的螺旋形貌铺平了道路,而无需单晶误切衬底来引发线缺陷。通常在硫浓度突然增加引起的高成核速率下,观察到由螺杆位错促进的独特螺旋形貌。螺旋位错辅助的螺旋MoS2生长导致高步长密度,总边缘长度增加了几倍。对平面和螺旋状MoS2薄片进行详细的原子力显微镜相位成像的统计分析表明,相对于螺旋结构中可利用的步数变化,总边缘长度从近似470 nm线性增加至近似2325 nm。 2-8。高分辨率透射电子显微镜成像揭示了壁架的局部原子结构,该结构将螺旋MoS2结构中的各个层分开,并有助于生长机制的发展。 MoS2的优化螺旋生长为氢能发电应用提供了无数的活性位。在以高壁架密度装饰的p型Si衬底上生长的MoS2的氢气析出性能提供了活性吸附位点,导致氢气在较低的电位下以较高的电流密度析出。提高硫蒸发速率以诱导成核速率峰值的已开发策略,促进了螺旋形位错驱动的MoS2生长。这样的硫蒸发速率控制的螺旋形增长对于二维材料的表面工程,以收获用于氢析出,催化剂和传感器应用的活性边缘位点的益处非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号