首页> 外文期刊>ACS catalysis >g-C3N4 Hydrogen-Bonding Viologen for Significantly Enhanced Visible-Light Photocatalytic H-2 Evolution
【24h】

g-C3N4 Hydrogen-Bonding Viologen for Significantly Enhanced Visible-Light Photocatalytic H-2 Evolution

机译:G-C3N4用于显着增强的可见光光催化H-2演化的G-C3N4氢键助力研

获取原文
获取原文并翻译 | 示例
           

摘要

Graphitic carbon nitride (g-C3N4) has recently emerged as a promising metal-free photocatalytic material for the conversion of solar energy into chemical energy under visible-light irradiation. Unfortunately, the photocatalytic activity of g-C3N4 is still unsatisfactory due to the serious recombination of photo generated electron-hole pairs. Here, we develop a strategy to construct a type of g-C3N4-based composite photocatalyst (C3N4/ CBV2+), a g-C3N4 surface coupled with a viologen redox mediator (1,1'-bis(4-carboxylatobenzy1)-4,4'-bipyridinium dichloride, denoted as CBV2+ through hydrogen bonds, for enhanced H, production from water under visible-light irradiation. The CBV2+ molecules not only provide sites for metal particle formation but also act as an efficient electron transfer mediator to transfer the photoinduced electrons from g-C3N4 to platinum nanoparticles (Pt NPs). The vectorial charge transfer results in an efficient spatial separation of electrons and holes in the C3N4/CBV2+ composite photocatalyst and facilitates the photogenerated charge carriers for direct photocatalytic water splitting. When 1 wt % CBV2+ is introduced, the hydrogen production rate of C3N4/CBV2+ dramatically increases up to 41.57 mu mol h(-1), exceeding 85 times the rate over unmodified g-C3N4 (only 0.49 mu mol 11'). It is noted that a negligible loss of photocatalytic activity was observed over continuous irradiation up to 20 h, demonstrating its good stability. The combination of the two emerging functional materials represents a simple but economical and powerful approach for highly effective photocatalytic hydrogen production under visible light irradiation. This study opens a window to rationally develop cost-acceptable materials for more efficient solar energy conversion applications.
机译:石墨碳氮化物(G-C3N4)最近被出现为可前景的无金属光催化材料,用于在可见光照射下将太阳能转化为化学能。遗憾的是,由于照片产生的电子孔对的严重重组,G-C3N4的光催化活性仍然不令人满意。在此,我们制定一种构建一种基于G-C3N4的复合光催化剂(C3N4 / CBV2 +)的策略,其与Viologen氧化还原介质偶联的G-C3N4表面(1,1'-BIS(4-羧基肼)-4, 4'-双嘧啶二氯化物,用氢键表示为增强的H,用于增强H,在可见光照射下的水产生。CBV2 +分子不仅为金属颗粒形成提供了位点,而且作为一种有效的电子转移介质,以转移光致介质从G-C3N4到铂纳米颗粒的电子,导致vt载体电荷转移导致C3N4 / CBV2 +复合光催化剂中的电子和孔的有效空间分离,并促进光催化载体用于直接光催化水分解。当1wt%时介绍CBV2 +,C3N4 / CBV2 +的氢气产生速率显着增加至41.57μmolH(-1),超过未经修改的G-C3N4的速率(仅0.49μmol11')。注意到NE在连续辐照上观察到漫长的光催化活性损失,高达20小时,证明了其良好的稳定性。两种新兴功能材料的组合代表了可见光照射下高效光催化氢生产的简单但经济型和强大的方法。本研究开辟了一个窗口,可理性地开发成本可接受的材料,以实现更高效的太阳能转换应用。

著录项

  • 来源
    《ACS catalysis》 |2017年第12期|共7页
  • 作者单位

    Univ Sci &

    Technol China Div Nanomat &

    Chem Hefei Natl Lab Phys Sci Microscale Dept Chem Phys Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Div Nanomat &

    Chem Hefei Natl Lab Phys Sci Microscale Dept Chem Phys Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Div Nanomat &

    Chem Hefei Natl Lab Phys Sci Microscale Dept Chem Phys Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Div Nanomat &

    Chem Hefei Natl Lab Phys Sci Microscale Dept Chem Phys Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Div Nanomat &

    Chem Hefei Natl Lab Phys Sci Microscale Dept Chem Phys Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Div Nanomat &

    Chem Hefei Natl Lab Phys Sci Microscale Dept Chem Phys Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Div Nanomat &

    Chem Hefei Natl Lab Phys Sci Microscale Dept Chem Phys Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

    g-C3N4/viologen; hydrogen bond; visible-light photocatalysis; hydrogen evolution; charge separation efficiency;

    机译:G-C3N4 / Viologen;氢键;可见光光催化;氢气进化;电荷分离效率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号