...
首页> 外文期刊>ACS Macro Letters >Block Polymer Membranes Functionalized with Nanoconfined Polyelectrolyte Brushes Achieve Sub-Nanometer Selectivity
【24h】

Block Polymer Membranes Functionalized with Nanoconfined Polyelectrolyte Brushes Achieve Sub-Nanometer Selectivity

机译:用纳米胺聚电解质刷官能化的嵌段聚合物膜实现亚纳米选择性

获取原文
获取原文并翻译 | 示例
           

摘要

The well-defined nanostructure of membranes manufactured from self-assembled block polymers enables highly selective separations; however, recent efforts to push the pore size of block polymer-based membranes to the lower end of the size spectrum have only been moderately successful for a variety of reasons. For instance, the conformational changes of the stimuli-responsive functional groups lining the pore walls of some block polymer membranes result in varied pore sizes that limit their operational range. Here, we overcome this challenge through the directed design of the third moiety of an A-B-C triblock polymer. The use of this macromolecular design paradigm allows for the preparation of a 500 nm thick polyisoprene-b-polystyrene-b-poly(2-acrylamido-ethane-1,1-disfulonic acid) (PI-PS-PADSA) coating atop a hollow fiber membrane support. This nanoporous test bed, which exhibits an average pore radius of 1 nm, demonstrates an extremely high solute selectivity by fully gating solutes that have only an 8 ? size difference, a separation that is based solely on a sieving mechanism. Furthermore, the nanoscale structural characteristics of the solvated PADSA pore walls are elucidated by quantifying the rejection of neutral solutes and calculating the hydraulic permeability values in solutions of high ionic strength (1 mM ≤ I ≤ 3 M) and over a broad range of solution pH (1 ≤ pH ≤ 13). These key results provide a solid foundation for defining structure–property–performance relationships in the emerging area of nanoporous triblock polymer thin films. Moreover, the successful demonstration of the test bed separation device offers a tangible means by which to manufacture next-generation nanofiltration membranes that require a robust performance profile over a dynamic range of conditions.]]>
机译:<!图像/介质/ MZ-2017-002783_0005.gif“>使用自组装块聚合物制造的膜的明确纳米结构使得能够高度选择性;然而,最近的努力将嵌段聚合物基膜的孔径推向尺寸谱的下端,由于各种原因,仅适度成功。例如,衬砌一些嵌段聚合物膜的孔壁的刺激函数组的构象变化导致限制其操作范围的变化的孔径。在这里,我们通过A-B-C三嵌段聚合物的第三部分的定向设计来克服这一挑战。使用这种大分子设计范式允许制备500nm厚的聚异戊二烯 - -polystyrene- B - 聚(2-丙烯酰胺 - 乙烷-1,1--耐磷酸)(PI-PADSA)涂覆在中空纤维膜载体上。该纳米多孔试验床,其具有1nm的平均孔径半径,通过完全胶合溶质溶解于具有8Ω的完全溶质,表现出极高的溶质选择性。尺寸差异,单独基于筛分机制的分离。此外,通过量化中性溶质的排斥并计算高离子强度的溶液(1mm≤≤3μ),通过量化溶剂化PADSA孔壁的纳米级结构特性。在宽范围的溶液pH(1≤pH≤13)上。这些关键结果为定义了纳米孔三嵌段聚合物薄膜的新出版区域中的结构性能 - 性能关系提供了坚实的基础。此外,试验床分离装置的成功演示提供了一种有形的方法,通过该方法可以在动态的条件范围内制造需要稳健性能曲线的下一代纳米滤膜。]]>

著录项

  • 来源
    《ACS Macro Letters》 |2017年第7期|共7页
  • 作者单位

    Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46556 United States;

    Charles D. Davidson School of Chemical Engineering and Department of Chemistry Purdue University West Lafayette Indiana 47907 United States;

    Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46556 United States;

    Charles D. Davidson School of Chemical Engineering and Department of Chemistry Purdue University West Lafayette Indiana 47907 United States;

    Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46556 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号