...
首页> 外文期刊>Analog Integrated Circuits and Signal Processing >Bio-cellular processes modeling on silicon substrate: receptor-ligand binding and Michaelis Menten reaction
【24h】

Bio-cellular processes modeling on silicon substrate: receptor-ligand binding and Michaelis Menten reaction

机译:硅衬底上的生物细胞过程模拟:受体 - 配体结合和迈克莱斯骤压反应

获取原文
获取原文并翻译 | 示例
           

摘要

There has been a growing interest and motivation in analog electronic circuit modeling of bio-cellular networks, which forms the basis of cellular functions of all living organisms. The complexity and size of such networks has made this task arduous, while opening up new opportunities as well. A number of modeling techniques, from mathematical models to computer simulations, have been used in this domain to aid the interpretation of such complex and sophisticated networks. This research article focuses on modeling of bio-cellular structures and processes on silicon substrate using transistors in analog domain. MOS transistor analogies for some very commonly found bio-cellular reactions namely receptor-ligand kinetics and Michaelis Menten kinetics have been presented, which are based on previously established ordinary differential equation representation models of these biocellular processes. It has been shown mathematically and through simulations that a number of bio-chemical entities in the kinetic processes map naturally to some electronic entities, and exploiting these similarities can drastically reduce the size of the corresponding silicon mimetics. The suggested circuits use lesser number of transistors than the existing approaches in this domain, while producing the same behavior satisfactorily. This can to some extent ease the development of larger networks with more complex interactions, hence mitigating the intricacy involved in cellular processes when viewed as a complete system and can contribute positively to multiple disciplines like genetics, bio-informatics, medical sciences, and even computer science and engineering.
机译:生物蜂窝网络的模拟电子电路建模存在越来越令人兴趣和动力,这构成了所有生物体的蜂窝功能的基础。这些网络的复杂性和大小使这项任务艰巨,同时开辟了新的机会。从数学模型到计算机模拟的许多建模技术已被用于该域中,以帮助解释这种复杂和复杂的网络。该研究文章侧重于使用模拟域中使用晶体管的晶体管对生物蜂窝结构和过程的建模。已经提出了一些非常常见的生物细胞反应的MOS晶体管类别,即受体 - 配体动力学和MICHAELIS MENTEN动力学,其基于这些生物细胞工艺的先前建立的常用式等式表示模型。它已经在数学上和通过模拟示出了动力学过程中的许多生物化学实体自然地图地图,并利用这些相似性可以大大降低相应的硅模拟物的尺寸。建议的电路使用较少数量的晶体管,而不是该领域的现有方法,同时令人满意地产生相同的行为。这可以在某种程度上缓解具有更复杂的相互作用的较大网络的发展,因此在被视为完整系统时减轻了蜂窝过程中所涉及的复杂性,并且可以对遗传学,生物信息学,医学科学,甚至计算机等多个学科提供贡献科学与工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号