首页> 外文期刊>Agricultural Systems >Comparing soil respiration and carbon pools of a maize-wheat rotation and switchgrass for predicting land-use change-driven SOC variations
【24h】

Comparing soil respiration and carbon pools of a maize-wheat rotation and switchgrass for predicting land-use change-driven SOC variations

机译:比较玉米 - 小麦旋转和碳粉池的碳池及其开关预测土地利用变化驱动的SOC变化

获取原文
获取原文并翻译 | 示例
           

摘要

The deployment of dedicated energy crops and the related land-use change are topical issues, particularly in relation to carbon storage and climate change mitigation effects. In order to maximize their mitigation potential and to fully supply new biorefineries, perennial energy crops may be established, not only on former idle and grazing lands, but also on the least remunerative cropland, as indirect land use change effects are still very uncertain. Possibly becoming a future land-use change option, the carbon flows of the most common crop rotation in Europe (maize-wheat) and the perennial grass switchgrass were measured, and later included in a biogeochemical model to build possible scenarios. Yearly mean soil respiration did not statistically differ between switchgrass and the annual cereals (2.9 and 2.5 Mg CO2 ha(-1) month(-1), respectively), but in switchgrass the peak flux was reached during crop growth (6.1 Mg CO2 ha(-1) month(-1)), while in the cereal system it occurred in bare soil (after harvest and soil tillage) (4.5 Mg CO2 ha(-1) month(-1)). Harvest residues contributing to soil organic matter were highest in maize (12.4 Mg ha(-1) y(-1)) and decreased in switchgrass (-79%) and wheat (-87%). Root biomass was much higher in switchgrass (10.0 Mg ha(-1) y(-1)) than maize (-81%) or wheat (-94%). Model projections showed how continuous switchgrass cycles of 15 years following annual crops cultivation were capable to keep building up SOC inventories (0.24 or 0.32 Mg ha(-1) y(-1)) up to the year 2100. On the opposite, maintaining the land under maize-wheat cultivation, depending on maize stover management, would either produce a SOC loss (-3.6 Mg ha(-1)) or could help the soil increasing SOC (9.4 Mg ha(-1)) towards a new equilibrium after two decades.
机译:部署专用能源作物和相关土地利用变化是局部问题,特别是与碳储存和气候变化缓解效应有关。为了最大限度地提高他们的缓解潜力和完全供应新的生物归物,可能会建立多年生能量作物,不仅在前闲置和放牧的土地上,而且还在最不重要的农田上,作为间接土地利用变化效应仍然非常不确定。可能成为未来的土地利用变化选项,测量欧洲最常见的作物旋转的碳流量和多年生草舍转换,后来包括在生物地球化学模型中以建立可能的情况。每年平均呼吸在SectionGrass和每年谷物(2.9和2.5mg CO2 HA(-1)个月(-1)之间没有统计学不同),但在交换草中,在作物生长期间达到峰值通量(6.1mg CO2 HA (-1)个月(-1)),而在谷物系统中,它发生在裸土壤(收获和土壤耕作后)(4.5mg CO2 HA(-1)个月(-1))。为土壤有机质的收获残余物在玉米(12.4mg ha(-1)y(-1))中最高,切换紫杉(-79%)和小麦(-87%)下降。从玉米(-81%)或小麦(-94%),根生物量高于玉米(-81%)(-1%)(-1%)(-1%)。模型预测显示,在年度作物培养后15年的连续交换循环有能力,在2100年的同一,维护的情况下,有能力保持建立SOC库存(0.24或0.32 mg(-1)y(-1))。根据玉米 - 小麦栽培的土地,取决于玉米橄榄渣管理,可以产生SOC损失(-3.6 mg ha(-1)),或者可以帮助土壤增加SoC(9.4 mg ha(-1))以后的新均衡二十年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号