...
首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Application of lumped parameter model to estimate mean transit time (MTT) of the thermal water using environmental tracer (H-3): Insight from Uttarakhand geothermal area (India)
【24h】

Application of lumped parameter model to estimate mean transit time (MTT) of the thermal water using environmental tracer (H-3): Insight from Uttarakhand geothermal area (India)

机译:集体参数模型在近日(H-3)中估算热水的平均过境时间(MTT):北方地热区(印度)的洞察力

获取原文
获取原文并翻译 | 示例
           

摘要

Uttarakhand geothermal area, a part of Himalayan geothermal province, is one of the most important geothermal fields in India. Thermal springs at Tapoban and Badrinanth area are the most well studied ones among several thermal manifestations present in this area. Lumped parameter models are used in this study to calculate the mean residence time of the thermal fluids using tritium concentrations of both precipitation and thermal water. Piston flow model (PFM), exponential mixing model or well mixed model (EMM), exponential piston flow (EPM) and dispersion model (DM) are used to estimate the mean transit time (MTT) of the thermal fluids. TracerLPM (version 1), an interactive Excel(*) (2007 or later) workbook program, is employed to carry out this modelling procedure. Historical records of weighted mean tritium concentration of precipitation at New Delhi GNIP station (representative of the study area) acts as input concentration in modelling procedure. Missing values of tritium concentrations at New Delhi GNIP station are derived by comparing the available tritium concentration data with the tritium records at Ottawa GNIP station, Canada. Ratio between tritium values of the two GNIP stations (New Delhi and Ottawa) indicates that tritium concentration in Ottawa can be scaled by the factor of 0.41 to match with the tritium concentration at New Delhi GNIP station. Among different lumped parameter models, the simulated tritium output concentration derived from EPM and DM matches closely with the measured tritium concentration of the thermal springs. The estimated mean transit time of the Tapoban thermal water (THS) is found to be between 40 and 44 years whereas for Badrinath thermal water (BTHS) it ranges from 102 to 112 years. Both the models (EPM and DM) suggest that the aquifer feeding the Tapoban thermal water (THS) contains mixture of water flow paths i.e. combination of both exponential and piston flow, whereas aquifer feeding the Badrinanth thermal water (BTHS) mos
机译:喜马拉雅地热省的北方地区地区是印度最重要的地热田之一。 Tapoban和Badrinanth地区的热弹簧是该地区存在的几种热表现中最良好的研究。在本研究中使用集总参数模型来计算热流体使用沉淀和热水的氚浓度的平均停留时间。活塞流模型(PFM),指数混合模型或井混合模型(EMM),指数活塞流(EPM)和分散模型(DM)用于估计热流体的平均转动时间(MTT)。 Tracerlpm(版本1),采用交互式Excel(*)(2007或更高版本)工作簿程序来执行此建模程序。新德里Gnip站(研究区代表)加权平均氚浓度的历史记录作为建模程序中的输入浓度。通过将可用的Tritium集中数据与加拿大渥太华盖浦站的氚记录进行比较,得出新德里Gnip站缺失的氚浓度值。两个GNIP站(新Delhi和Ottawa)的氚值之间的比例表明,渥太华的氚浓度可以缩放0.41,以与新德里Gnip站的氚浓度相匹配。在不同的集总参数模型中,衍生自EPM和DM的模拟氚输出浓度与热弹簧的测量氚浓度紧密地匹配。发现Tapoban热水(THS)的估计平均转移时间在40至44岁之间,而Badrinath热水(BTH)从102至112岁到。模型(EPM和DM)都表明饲喂Tapoban热水(THS)的含水层含有水流动路径的混合物,即指数和活塞流量的组合,而喂食BADRINANTH热水(BTHS)MOS的含水层

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号