...
首页> 外文期刊>Integrative and Comparative Biology >Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion
【24h】

Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion

机译:了解运行鸟类的敏捷性:传感器和禽双向运动的机械因子

获取原文
获取原文并翻译 | 示例
           

摘要

Birds are a diverse and agile lineage of vertebrates that all use bipedal locomotion for at least part of their life. Thus birds provide a valuable opportunity to investigate how biomechanics and sensorimotor control are integrated for agile bipedal locomotion. This review summarizes recent work using terrain perturbations to reveal neuromechanical control strategies used by ground birds to achieve robust, stable, and agile running. Early experiments in running guinea fowl aimed to reveal the immediate intrinsic mechanical response to an unexpected drop ("pothole") in terrain. When navigating the pothole, guinea fowl experience large changes in leg posture in the perturbed step, which correlates strongly with leg loading and perturbation recovery. Analysis of simple theoretical models of running has further confirmed the crucial role of swing-leg trajectory control for regulating foot contact timing and leg loading in uneven terrain. Coupling between body and leg dynamics results in an inherent trade-off in swing leg retraction rate for fall avoidance versus injury avoidance. Fast leg retraction minimizes injury risk, but slow leg retraction minimizes fall risk. Subsequent experiments have investigated how birds optimize their control strategies depending on the type of perturbation (pothole, step, obstacle), visibility of terrain, and with ample practice negotiating terrain features. Birds use several control strategies consistently across terrain contexts: (1) independent control of leg angular cycling and leg length actuation, which facilitates dynamic stability through simple control mechanisms, (2) feedforward regulation of leg cycling rate, which tunes foot-contact timing to maintain consistent leg loading in uneven terrain (minimizing fall and injury risks), (3) load-dependent muscle actuation, which rapidly adjusts stance push-off and stabilizes body mechanical energy, and (4) multi-step recovery strategies that allow body dynamics to transiently vary while tightly regulating leg loading to minimize risks of fall and injury. In future work, it will be interesting to investigate the learning and adaptation processes that allow animals to adjust neuromechanical control mechanisms over short and long timescales.
机译:鸟类是脊椎动物的多样化和敏捷的血迹,所有脊椎动物都使用双面运动员,以至少部分生活。因此,鸟类提供了有价值的机会来调查生物力学和感官电流控制如何为敏捷双模型集成。此审查总结了使用地形扰动的最新工作,以揭示地面鸟类使用的神经力学控制策略,以实现强大,稳定和敏捷运行。跑豚禽的早期实验旨在揭示地形中意外下降(“坑洞”)的直接内在机械反应。在导航坑洞时,几内亚禽在扰动步骤中的腿部姿势变化很大,与腿部加载和扰动恢复强烈地相关。跑步简单理论模型的分析进一步证实了摆腿轨迹控制对调节脚接触时序和腿部装载在不均匀地形中的关键作用。身体和腿动力学之间的耦合导致Swing腿部回缩率的固有折衷率,用于避免伤害避免。快腿缩回最小化伤害风险,但缓慢的腿部缩回最小化了秋季风险。随后的实验研究了鸟类如何根据扰动(坑洞,步骤,障碍物),地形的可见性以及谈判地形特征的充分实践来优化其控制策略。鸟类在地形上下文中始终如一地使用多种控制策略:(1)独立控制腿角循环和腿长致动,通过简单的控制机制,促进了动态稳定性,(2)腿循环率的前馈调节,调整脚接触时间保持一致的腿部加载在不均匀的地形(最小化跌倒和伤害风险),(3)依赖性肌肉致动,该肌肉致动迅速调节姿势推断并稳定体内机械能,(4)允许身体动态的多步回收策略瞬间变化,同时严格调节腿部装载,以尽量减少跌倒和伤害的风险。在将来的工作中,调查允许动物在短期和长时间尺度上调神经机械控制机制的学习和适应过程将会有趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号