首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress
【24h】

Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress

机译:高水平原位应力隧道爆破轮廓爆破岩骨折和碎裂的组合有限 - 离散元素建模

获取原文
获取原文并翻译 | 示例
           

摘要

A combined finite-discrete element method (FDEM) parallelized on the basis of GPGPU is implemented to model the rock fracture and fragmentation process and the resultant excavation damaged zone (EDZ) development induced by the controlled contour blasting, which was conducted in the TASQ tunnel with high in-situ stresses in the Aspo Hard Rock Laboratory in Sweden. The combination of in-situ stress field, equation-of-state based blast loading, fracturing in tension and shear with gas flow loading of fractures enables the modelling of complex dynamic interactions from multiple blast rounds. For the contour blasting under high horizontal in-situ stresses, blasting-induced fractures initially propagate horizontally, even though the holes are decoupled. Later, these fractures coalesce into larger cracks, which prevents the formation of smooth tunnel walls and increases the EDZ. Smoother surfaces are created at the crown and invert by the propagation of long fractures in the horizontal direction. Due to the combined effect of the free surfaces provided by the adjacent blast-holes and the maximum principal stress induced by in-situ stresses, the fractures at the lower part of the tunnel sidewalls have the tendency to propagate upwards with a diagonal direction about 60 degrees relative to vertical, in accordance with the field test results. Removing the in-situ stresses results in smoother sidewall fracturing with more damage in the crown and invert. Increase in rock heterogeneity, above a threshold, induces more fractures. Increasing the detonation timing between blast-holes induces more damage into the rock mass and fragmentation in the burden. Outcomes of this study show that the GPGPU-parallelized Y-HFDEM IDE provides a powerful tool to replicate the mechanisms of rock fracture and fragmentation induced by blasting.
机译:并行于GPGPU并行化的组合有限离散元素方法(FDEM)以模拟由受控轮廓爆破引起的岩石骨折和碎片过程和所得的挖掘损坏区域(EDZ)发育,该开发在TASQ隧道中进行在瑞典的Aspo Hard Rock实验室具有高地强调。原位应力场的组合,基于状态方程的爆破载荷,压裂和裂缝的剪切剪切的压裂使得能够从多个爆破轮级建模复杂的动态相互作用。对于在高水平原位应力下的轮廓爆破,即使孔分离出来,爆破诱导的骨折最初水平繁殖。后来,这些裂缝将聚集成较大的裂缝,这可以防止形成光滑的隧道壁并增加EDZ。在表冠上产生光滑的表面,并通过在水平方向上的长骨折的传播反转。由于由相邻的冲孔提供的自由表面和由原位应力引起的最大主应力提供的自由表面的组合效果,隧道侧壁下部的裂缝具有大约60的对角线方向向上传播的趋势根据现场测试结果相对于垂直度。去除原位应力导致更平滑的侧壁压裂,在冠上造成更多伤害并反转。岩石异质性增加,高于阈值,诱导更多的裂缝。增加爆炸孔之间的爆震时间造成更多损伤的岩石质量和负担的碎片。该研究的结果表明,GPGPUParally化Y-HFDEM IDE提供了一种强大的工具,可以复制爆破诱导的岩石骨折和碎片的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号