...
【24h】

Watershed and ocean controls of salt marsh extent and resilience

机译:流域和海洋控制盐沼范围和韧性

获取原文
获取原文并翻译 | 示例
           

摘要

The formation and evolution of tidal platforms are controlled by the feedbacks between hydrodynamics, geomorphology, vegetation, and sediment transport. Previous work mainly addresses dynamics at the scale of individual marsh platforms. Here, we develop a process-based model to investigate salt marsh depositional/erosional dynamics and resilience to environmental change at the scale of tidal basins. We evaluate how inputs of water and sediment from river and ocean sources interact, how losses of sediment to the ocean depend on this interaction, and how erosional/depositional dynamics are coupled to these exchanges. Model experiments consider a wide range of watershed, basin, and oceanic characteristics, represented by river discharge and suspended sediment concentration, basin dimensions, tidal range, and ocean sediment concentration. In some scenarios, the vertical accretion of a tidal flat can be greater than the rate of sea level rise. Under these conditions, vertical depositional dynamics can lead to transitions between tidal flat and salt marsh equilibrium states. This type of transition occurs much more rapidly than transitions occurring through horizontal marsh expansion or retreat. In addition, our analyses reveal that river inputs can affect the existence and extent of marsh/tidal flat equilibria by both directly providing suspended sediment (favoring marshes) and by modulating water exchanges with the ocean, thereby indirectly affecting the ocean sediment input to the system (favoring either marshes or tidal flats depending on the ratio of the river and ocean water inputs and their sediment concentrations). The model proposed has the goal of clarifying the roles of the main dynamic processes at play, rather than of predicting the evolution of a particular tidal system. Our model results most directly reflect micro- and meso-tidal environments but also have implications for macro-tidal settings. The model-based analyses presented extend our theoretical understanding of marsh dynamics to a greater range of intertidal environments. (c) 2020 John Wiley & Sons, Ltd.
机译:潮汐平台的形成和演化由流体动力学,地貌,植被和沉积物运输之间的反馈控制。以前的工作主要是以个人沼泽平台的规模解决动态。在这里,我们开发一种基于过程的模型,以调查盐沼沉积/侵蚀动力学和潮汐盆地规模的环境变化的弹性。我们评估河流和海洋来源的水和沉积物的输入如何相互作用,如何对海洋的沉积物损失取决于这种相互作用,以及如何侵蚀/沉积动力学如何与这些交换耦合。模型实验考虑各种流域,盆地和海洋特征,由河流放电和悬浮沉积物浓度,盆地尺寸,潮汐范围和海洋沉积物浓度代表。在某些情况下,潮汐扁平的垂直增压可以大于海平面上升的速率。在这些条件下,垂直沉积动力学可导致潮汐平和盐沼均衡状态之间的过渡。这种转换会比通过水平沼泽扩展或撤退发生的过渡更快地发生得更快。此外,我们的分析表明,通过直接提供悬浮沉积物(有利的沼泽)和通过调节与海洋的水交换,可以影响沼泽/潮平均衡的存在和程度,从而间接影响系统的海洋沉积物(取决于河流和海洋水投入的比例及其沉积物浓度的比例,有利于沼泽或潮汐单位)。该模型提出的目的是阐明主要动态过程的角色在游戏中,而不是预测特定潮汐系统的演变。我们的模型结果最直接反映了微型和中间潮汐环境,但也具有对宏观设置的影响。基于模型的分析提出了对沼泽动力学的理论理解扩展到更大范围的潮间环境。 (c)2020 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号