...
首页> 外文期刊>International Journal of Mineral Processing >Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology
【24h】

Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology

机译:复合中央设计方法旋风微泡浮选柱中浮选过程的动力学建模与优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, a composite central design with five levels and four variables was employed to model and optimize the batch flotation kinetic process in a cyclonic microbubble flotation column (FCMC). 30 sets of batch flotation rate tests were executed at different conditions of pulp concentration (X-1), frother dosage (X-2), flow rate of circulation pulp (X-3) and froth depth (X-4). It was observed the maximum flotation time (t(max)) obtained in tests fluctuated wildly under different conditions. Statistical analysis based on the model fit and stability was performed to discriminate six kinetic models. The response surface methodology was used for the identification and development of significant relationship between process variables. Statistical analysis indicated that the modified Kelsall model was the optimal kinetic model for characterizing the flotation process. Analysis of variance results revealed that the effect of X-1 was significant for all process responses. X-4 was found as a significant independent factor for the two response variables of tmax and the ultimate combustible recovery (a.) of the optimal kinetic model. X-3 had a significant influence on the parameter of the optimal kinetic model (the fraction of flotation components with the slow rate constant). Furthermore, the maximum flotation time and a,. were significantly influenced by the interaction between X-1 and X-4. Based on the result of optimization it was found that the desired ultimate combustible recovery with an appropriate flotation time was obtained from the flotation process with a given range of experimental variables (Xi: from the intermediate levels to the higher levels; X-2: the intermediate level; X-3: 220 g/t and X-4: 25.00 mm). There was an acceptable relationship between predicted and actual values with one of the optimal conditions (Adj. R-2 = 0.9971). The response surface methodology was effective for predicting and optimizing the batch flotation process of FCMC. (C) 2016 Elsevier B.V. All rights reserved.
机译:在这项工作中,使用具有五个级别和四个变量的复合中央设计来模拟和优化旋流微泡浮选柱(FCMC)中的批量浮选动力学过程。在不同条件下在纸浆浓度(X-1)的不同条件下进行30组批量浮选速率测试,循环纸浆(X-3)和泡沫深度(X-4)的不同剂量(X-2)。观察到在不同条件下,测试中获得的最大浮选时间(T(最大))在不同的条件下繁漏。进行了基于模型配合和稳定性的统计分析,以区分六种动力学模型。响应表面方法用于识别和开发过程变量之间的显着关系。统计分析表明,改进的Kelsall模型是用于表征浮选过程的最佳动力学模型。方差结果分析表明,X-1的效果对于所有过程反应都很重要。发现X-4作为TMAX的两个响应变量和最佳动力学模型的最终可燃恢复(a。)的重要独立因素。 X-3对最佳动力学模型的参数(具有慢速恒定常量的浮选组件的分数)对参数产生了显着影响。此外,最大浮选时间和a。受到X-1和X-4之间相互作用的显着影响。基于优化的结果,发现从具有给定范围的实验变量的浮选过程获得了具有适当浮选时间的所需的最终可燃回收(Xi:从中间水平到更高的水平; x-2:中间水平; x-3:220 g / t和x-4:25.00 mm)。预测和实际值与一个最佳条件(adj。r-2 = 0.9971)之间有可接受的关系。响应面方法是有效预测和优化FCMC的批量浮选过程。 (c)2016年Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号