...
首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Visualization-based nucleate pool boiling heat transfer enhancement on different sizes of square micropillar array surfaces
【24h】

Visualization-based nucleate pool boiling heat transfer enhancement on different sizes of square micropillar array surfaces

机译:基于可视化的核心池沸腾的展热量,不同尺寸的方形微米阵列表面

获取原文
获取原文并翻译 | 示例
           

摘要

Visualization-based nucleate pool boiling experiments are carried out on different sizes of square micropillar array surfaces (SMAS) and plain surface using deionized water as working fluid at atmospheric pressure. The quantitative measurements of the bubble dynamics, including the nucleation site density, the bubble departure diameter and the frequency, are obtained using a high-speed camera with microscope. The obtained results show that the SMAS, with square micropillar in the range of 0.2-0.8 mm height and width (the pitch between the micropillar is equal to the micropillar width), has a considerably lower wall superheat, which enhanced the heat transfer coefficient (HTC) by 32-203% compared to the plain surface. Generally, the boiling heat transfer intensifies with the increase in the square micropillar height keeping the width constant. But the tendency reverses at high heat flux levels. The high-speed visualization reveals that the higher square micropillar has faster bubble departure frequency at low heat flux, because higher micropillar is conducive to induce capillary flow and aids in separating the paths of departing bubble and replenishment liquid. However, the increase of bubble diameter at high heat flux restrains bubble departure with higher square micropillar. In addition, the increase of square micropillar width is conducive to enhancing the boiling heat transfer and the tendency is reversed at high heat flux levels when the square micropillar height is kept constant. The bubble dynamics are compared with the predictions using various correlations from the literature.
机译:基于可视化的核心池沸腾实验在各大尺寸的方形微米阵列表面(SMA)和平滑表面上使用去离子水以大气压下的工作流体进行。使用具有显微镜的高速相机获得泡沫动力学的定量测量,包括成核位点密度,气泡偏离直径和频率。得到的结果表明,具有0.2-0.8mm的高度和宽度范围内的Smas,具有方形微毛虫(微孔之间的间距等于微漏宽度),具有相当低的壁过热,增强了传热系数(与平原表面相比,HTC)32-203%。通常,沸腾的热传递随着方形微毛坯高度的增加而保持宽度恒定。但趋势在高热量通量水平下逆转。高速可视化揭示了较高的方形微米在低热量通量下的泡沫脱离频率较快,因为更高的微米有利于诱导毛细血管流动,并有助于分离出泡沫和补充液的路径。然而,高热通量的气泡直径增加抑制了较高方形微池的气泡偏离。另外,方形微生物宽度的增加有利于提高沸腾热传递,并且当方形微小毛坯高度保持恒定时,在高热通量水平下倾向倾向。将泡沫动力学与使用来自文献的各种相关性的预测进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号