...
首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Effect of flow distortion on fuel/air mixing and combustion in an upstream-fueled cavity flameholder for a supersonic combustor
【24h】

Effect of flow distortion on fuel/air mixing and combustion in an upstream-fueled cavity flameholder for a supersonic combustor

机译:用于超声波燃烧器的上游燃料腔壳中燃料/空气混合和燃烧的流动变形的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes an experimental study of the effects of an incident shockwave on the flow field, fuel distribution and combustion within a cavity flameholder with upstream fuel injection. Two impingement locations are employed: (1) near the fuel injector (the so-called shock-on-jet case) and (2) on the cavity shear layer (the shock-on-cavity case). Shadowgraph is used to characterize the flow field. Air seeded with nitric oxide (NO) is used as the simulated fuel and the resulting planar laser-induced fluorescence (NO-PLIF) from NO molecules is used to characterize fuel/air mixing while planar laser-induced fluorescence of OH molecules to characterize the actual combustion process. The shadowgraph and NO-PLIF images are compared with a CFD (Computational Fluid Dynamics) solution of the Reynolds-averaged-Navier Stokes (RANS) for assessment and explanation of experimental results of non-reacting tests. The effect of the shock on the cavity shear layer is to control the fuel distribution within the cavity. The effect of the shock on the jet is to force the shear layer deep within the cavity, which results in higher fuel concentrations near the cavity centerline. The shock-on-cavity case causes the shear layer to separate upstream of the cavity. Mixing uniformity is enhanced by the increased breakup of the fuel plume. Combustion is stronger and more uniform with the shock impinging on the cavity, while it is limited to the edges of the cavity with shock impingenient on the jet. The greater mixing afforded in the shock-on-cavity case reduces the fuel concentration near the centerline and allows stronger burning in the center of the cavity. Doubling the fuel injection momentum flux ratio does not strongly affect the pattern of fuel distribution in either case, but combustion in the shock-on-cavity case is reduced, because the fuel concentration at the centerline is high. (C) 2017 Elsevier Inc. All rights reserved.
机译:本文介绍了事件冲击波对具有上游燃料喷射的腔扑壁器内流场,燃料分布和燃烧的效果的实验研究。采用两个冲击位置:(1)在腔剪切层(冲击腔壳体)上靠近燃料喷射器(所谓的冲击式射击壳)和(2)。 ShadowGraph用于表征流场。用一氧化氮(NO)接种的空气用作模拟燃料,并且从无分子的所得平面激光诱导的荧光(NO-PLIF)用于表征燃料/空气混合,而平面激光诱导的OH分子的荧光,以表征实际燃烧过程。将影像图和NO-PLIF图像与Reynolds-Iveriged-Navier Stokes(RANS)的CFD(计算流体动力学)解决方案进行比较,用于评估和解释非反应测试的实验结果。冲击对腔剪切层的影响是控制腔内的燃料分配。冲击对射流的影响是强迫腔内深的剪切层,这导致腔中心线附近的燃料浓度更高。冲击腔外壳使剪切层分离在腔的上游。通过增加燃料羽流的分解增强了混合均匀性。燃烧更强壮,更均匀,冲击撞击腔体,而在射流上限于腔体的抗冲击的边缘。在冲击腔外壳中提供的更大的混合降低了中心线附近的燃料浓度,并允许在腔的中心燃烧。加倍燃料喷射动量磁通比在任一情况下没有强烈影响燃料分布的模式,但是减少了冲击腔外壳中的燃烧,因为中心线处的燃料浓度高。 (c)2017年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号