...
首页> 外文期刊>Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow >Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface
【24h】

Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

机译:微观转子定子腔流量与旋转超疏水表面的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 x 10(3) = Re = 3.51 x 10(4)) and cavity aspect ratios (0.013 = G = 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.
机译:研究了微观转子 - 定子腔流量的流动特性及其具有高剪切应力的超疏水表面的减阻机理。基于微粒图像速度(Micro-PIV)建立了微观旋转流动测试系统,以及不同雷诺数下的流量分布(7.02×10(3)& = 3.51 x 10(4))和测量腔谱比率(0.013 = G. 0.013)。实验表明,对于圆周速度,流场在沿Z轴的低雷诺数的情况下在旋转耦合的情况下线性分布,而边界层分离并形成雷诺数量的批次流。随着腔纵横比的增加,边界层的分离加速。径向速度沿Z轴分布在S形。随着雷诺数和腔纵横比增加,径向速度的最大值增加,但旋转边界处的极值位置保持在Z * = 0.85,没有明显的变化,而静止边界处的极端位置沿Z轴变化。 。通过扰动分析给出了从静止到旋转边界的流动干扰的模型和从静止到旋转边界的变速器处理。在超疏水表面的作用下,旋转边界附近发生速度滑移,剪切应力降低,这导致最大阻力超过51.4%。涡旋旋转强度的轮廓表明,超疏水表面可以抑制涡旋旋流强度并排斥涡流结构,导致剪切雷诺应力的减少,然后减少减少。

著录项

  • 来源
  • 作者单位

    Tsinghua Univ Dept Precis Instrument State Key Lab Precis Measurement Technol &

    Instru Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Precis Instrument State Key Lab Precis Measurement Technol &

    Instru Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Precis Instrument State Key Lab Precis Measurement Technol &

    Instru Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Precis Instrument State Key Lab Precis Measurement Technol &

    Instru Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 流体力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号