首页> 外文期刊>Bioinspiration & biomimetics >A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations
【24h】

A flight-phase terrain following control strategy for stable and robust hopping of a one-legged robot under large terrain variations

机译:在大型地形变化下,控制稳定和稳健跳跃控制策略的飞行阶段地形

获取原文
获取原文并翻译 | 示例
       

摘要

This work demonstrates a simple, once per step, flight-control method for robots running on a planar unknown rough-terrain environment. The robot used to exemplify these control strategies is the ParkourBot, a spring loaded inverted pendulum (SLIP)-based robot. The SLIP model is widely used for the description of humans and animals running motion and has been the basis for many robots. A known control scheme for increasing robustness of the conservative, SLIP model is the swing leg retraction (SLR) method. Despite of the SLR's popularity, it is not intended to be used on the more realistic, non-conservative damped SLIP model. On the damped SLIP model, the SLR controller failed to provide adequate results, therefore, we have derived a new simple, flight-phase control method called polynomial energy insertion (PEI). The new PEI method is based on the dead-beat solution of the damped simplified instantaneous SLIP (iSLIP) model, which assumes an infinitely stiff spring. Unlike the SLR which, starting from apex, changes the leg angle monotonically during flight, the PEI requires the leg length (hence, energy insertion) to change monotonically throughout the flight phase. Interestingly, the leg angle remains nearly constant. In simulations and experiments, we have compared the newly developed PEI to the previous SLR method. We have found that since the SLR does not control the horizontal velocity, it looses its stability under rough terrain. The PEI method was able to control the horizontal velocity and height from ground and hence showed great improvement in robustness to rough terrain. Moreover, in both simulations and experiments the PEI methods showed an increase in the mean jumps to failure of more than 30% compared to SLR-based controllers.
机译:这项工作演示了一种简单,每一步一次,用于在平面上未知的粗糙地形环境上运行的机器人的飞行控制方法。用于举例说明这些控制策略的机器人是Parkourbot,一个弹簧加载的倒置摆(滑动)基机的机器人。滑动模型广泛用于人类和动物的描述运行运动,并且是许多机器人的基础。一种用于增加保守,滑动模型的稳健性的已知控制方案是Swing腿部缩回(SLR)方法。尽管是SLR的普及,但它并不旨在用于更现实,不保守的阻尼滑动模型。在阻尼滑动模型上,SLR控制器未能提供足够的结果,因此,我们衍生出一种名为多项式能量插入(PEI)的新简单的飞行期控制方法。新的PEI方法基于阻尼简化的瞬时滑动(ISLIP)模型的死区溶液,这假设无限刚性的弹簧。与从顶点开始的SLR不同,在飞行期间单调地改变腿角,PEI需要腿部长度(因此,能量插入)来整个飞行阶段单调地改变。有趣的是,腿角仍然差不多。在仿真和实验中,我们将新开发的PEI与以前的SLR方法进行了比较。我们发现,由于SLR不控制水平速度,因此它在崎岖的地形下稳定。 PEI方法能够控制地面的水平速度和高度,因此对崎岖地形的鲁棒性显示出巨大改善。此外,与基于SLR的控制器相比,PEI方法在两种模拟和实验中,PEI方法显示平均跳跃的增加超过30%的失效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号