...
首页> 外文期刊>Bioinspiration & biomimetics >Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control
【24h】

Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control

机译:基于射流基于射流的主动流量控制,增强了锚固翼型的空气动力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we explore the use of synthetic jet (SJ) in manipulating the vortices around a rigid heaving airfoil, so as to enhance its aerodynamic performance. The airfoil heaves at two fixed pitching angles, with the Strouhal number, reduced frequency and Reynolds number chosen as St = 0.3, k = 0.25 and Re = 100, respectively, all falling in the ranges for natural flyers. As such, the vortex force plays a dominant role in determining the airfoil's aerodynamic performance. A pair of in-phase SJs is implemented on the airfoil's upper and lower surfaces, operating with the same strength but in opposite directions. Such a fluid-structure interaction problem is numerically solved using a lattice Boltzmann method based numerical framework. It is found that, as the airfoil heaves with zero pitching angle, its lift and drag can be improved concurrently when the SJ phase angle phi(sj) relative to the heave motion varies between pi/4 and 3 pi/4. But this concurrent improvement does not occur as the airfoil heaves with pi/6 pitching angle. Detailed inspection of the vortex evolution and fluid stress over the airfoil surface reveals that, if at good timing, the suction and blowing strokes of the SJ pair can effectively delay or promote the shedding of leading edge vortices, and mitigate or even eliminate the generation of trailing edge vortices, so as to enhance the airfoil's aerodynamic performance. Based on these understandings, an intermittent operation of the SJ pair is then proposed to realize concurrent lift and drag improvement for the heaving airfoil with pi/6 pitching angle.
机译:在这项研究中,我们探讨了合成射流(SJ)在操纵刚性翼型翼型周围操纵涡流,以提高其空气动力学性能。翼型在两个固定的俯仰角升空,斯特拉尔数,减少频率和雷诺数分别选择为st = 0.3,k = 0.25并重新= 100,均落入自然传单的范围内。因此,涡旋力在确定翼型的空气动力学性能方面发挥着主导作用。在翼型的上表面和下表面上实现了一对同相SJ,以相同的强度但相反的方向操作。使用基于格子Boltzmann方法的数值框架进行数值求解这种流体结构相互作用问题。结果发现,当翼型升降距零点角度,当相对于升降运动相对于升降运动之间的SJ相角PHI(SJ)在PI / 4和3 PI / 4之间变化时,可以同时提高其升力和拖动。但是,由于翼型的底座,因此不会发生这种并行改善。详细地检查翼型表面上的涡流进化和流体应力揭示了,如果在良好的时序,SJ对的吸入和吹风冲程可以有效地延迟或促进前沿涡流的脱落,并减轻甚至消除生成尾随边缘涡旋,以提高翼型的空气动力学性能。基于这些谅解,提出了SJ对的间歇操作以实现具有PI / 6俯仰角的悬浮翼型的同时提升和拖动改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号