...
首页> 外文期刊>Bioinspiration & biomimetics >Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings
【24h】

Forewings match the formation of leading-edge vortices and dominate aerodynamic force production in revolving insect wings

机译:前翅符合领先边缘涡流的形成,并在旋转昆虫翅膀中主导空气动力生产

获取原文
获取原文并翻译 | 示例
           

摘要

In many flying insects, forewings and hindwings are coupled mechanically to achieve flapping flight synchronously while being driven by action of the forewings. How the forewings and hindwings as well as their morphologies contribute to aerodynamic force production and flight control remains unclear. Here we address the point that the forewings can produce most of the aerodynamic forces even with the hindwings removed through a computational fluid dynamic study of three revolving insect wing models, which are identical to the wing morphologies and Reynolds numbers of hawkmoth (Manduca sexta), bumblebee (Bombus ignitus) and fruitfly (Drosophila melanogaster). We find that the forewing morphologies match the formation of leading-edge vortices (LEV) and are responsible for generating sufficient lift forces at the mean angles of attack and the Reynolds numbers where the three representative insects fly. The LEV formation and pressure loading keep almost unchanged with the hindwing removed, and even lead to some improvement in power factor and aerodynamic efficiency. Moreover, our results indicate that the size and strength of the LEVs can be well quantified with introduction of a conical LEV angle, which varies remarkably with angles of attack and Reynolds numbers but within the forewing region while showing less sensitivity to the wing morphologies. This implies that the forewing morphology very likely plays a dominant role in achieving low-Reynolds number aerodynamic performance in natural flyers as well as in revolving and/or flapping micro air vehicles.
机译:在许多飞行昆虫中,前翅和挤出机械地连接到通过前翅的作用驱动而同步地实现拍打飞行。原料和后翅以及它们的形态有助于空气动力生产和飞行控制仍然不明确。在这里,我们解决了前翅可以通过三个旋转昆虫翼模型的计算流体动力学研究除去了原因,即使通过三个旋转昆虫翼模型的计算流体动力学研究,这与Hawkmoth(ManducaSexta)的翼形态和雷诺数相同, Bumblebee(Bombus Ignitus)和果蝇(果蝇Melanogaster)。我们发现前翅形态符合前沿涡流(LEV)的形成,并且负责在三个代表昆虫飞行的平均攻击角度和雷诺数的雷诺数中产生足够的提升力。随着后翅拆除的lev形成和压力负荷几乎不变,甚至导致功率因数和空气动力学效率的一些改进。此外,我们的结果表明,通过引入锥形lev角度,levs的尺寸和强度可以很好地定量,这与攻击角度显着变化,但在前翅区域内,但在前翅区域内显示出对机翼形态的敏感性较小。这意味着前翅形态很可能在实现自然传单中的低雷诺数空气动力学性能以及旋转和/或拍打微空气车辆方面发挥着主导作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号