...
首页> 外文期刊>Mathematical research letters: MRL >The conversion of wood residues, using pilot-scale technologies, into porous activated biochars for supercapacitors
【24h】

The conversion of wood residues, using pilot-scale technologies, into porous activated biochars for supercapacitors

机译:使用试验尺度技术转换木质残留物,进入超级电容器的多孔活化生物脉

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, activated biochar was produced using pilot-scale technologies of fast pyrolysis and activation to create desirable morphology, surface chemistry, and adsorptive properties for application in supercapacitors. First, residues from white birch were converted into biochar by fast pyrolysis (~ 450 degrees C). Then, physical (using CO2) or chemical (using KOH) activation was carried out in a homemade pilot-scale furnace at 900 degrees C. These synthesized materials presented distinct porosity structures: micro-/mesoporous (CO2 material) and highly microporous (KOH material), reaching surface areas of up to 1700 m(2) g(-1). Electrochemical results showed that KOH-activated biochar had higher specific electrical capacitance in both acidic and neutral electrolytes with a maximum specific capacitance value of 350 and 118 F g(-1) at 1 A g(-1), respectively; while, for CO2-activated biochar, the maximum obtained values were 204 and 14 F g(-1). The greater proportion of oxygenated and nitrogenated functional groups on the surface of the KOH activated biochar, along with its high surface area (with wider porosity), improved its performance as a supercapacitor electrode. Specifically, the low proportion of ultramicropores was determinant for its better electrochemical behavior, especially in the neutral electrolyte. Indeed, these results are similar to those found in the literature on the electrical capacitance of carbonaceous materials synthesized in a small-scale furnace. Thus, the chemical-activated biochar made from wood residues in pilot-scale furnaces is a promising material for use as electrodes for supercapacitors.
机译:在该研究中,使用快速热解和活化的先导技术生产激活的生物炭,以在超级电容器中产生所需的形态,表面化学和吸附性能。首先,通过快速热解(〜450℃),将来自白桦的残留物转化为生物炭。然后,在900℃的自制先导炉中进行物理(使用CO 2)或化学(使用KOH)活化。这些合成的材料呈现出不同的孔隙率结构:微/介孔(CO2材料)和高度微孔(KOH材料),达到高达1700米(2)克(-1)的表面积。电化学结果表明,酸性和中性电解质中的酸性和中性电解质的最大电容分别在1Ag(-1)的最大特异电容值350和118f g(-1)中具有较高的特定电容。虽然对于CO2激活的生物炭,但最大获得的值为204和14 f g(-1)。在KOH活化的生物炭表面上的氧化和氮官能团的比例较大,以及其高表面积(具有更宽的孔隙率),改善了其作为超级电容器电极的性能。具体地,较低比例的超微孔是其更好的电化学行为的决定因素,尤其是在中性电解质中。实际上,这些结果类似于在小型炉中合成的碳质材料的电容上的文献中发现的结果。因此,由先导型熔炉中的木质残留物制成的化学活化的生物炭是一种希望用作超级电容器电极的有希望的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号