首页> 外文期刊>Nano Energy >Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure
【24h】

Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure

机译:通过微观结构的人工操纵来提高乙醚电解质中碳材料的钠储存行为

获取原文
获取原文并翻译 | 示例
           

摘要

The porous carbon blacks rationally designed by a facile yet efficient NH3 thermal etching route have been investigated as anode materials in an ether-based electrolyte for sodium-ion batteries. The as-synthesized CBN35 carbon black with a 35% weight loss after NH3 thermal etching exhibited a large specific charge capacity of 352 mAh g(-1) at 50 mA g(-1) and a superior rate capability of 101 mAh g(-1) at 16000 mA g(-1), due to its highest microporosity, an appropriate surface area, a desirable microstructure, and a promising hybrid intercalation mechanism. Impressively, even cycled at 1600 mA g(-1) over 3200 cycles, an outstanding reversible capacity of 103 mAh g(-1) with a negligible 0.0162% capacity loss per cycle can still be achieved. Based on the multimodal characterizations including the structural probes of phase evolution for carbon materials, the electrochemical techniques, and the surface-sensitive XAS measurements, the exceptional electrochemical properties should stem from several merits of modified carbon black system. While the particular microporous structure provides relatively more accessible sodium storage sites, a novel hybrid intercalation mechanism in ether-based electrolyte would incorporate the sodium ion insertion into the disordered structure with the solvated sodium ion species co-intercalation into the graphitic phase. In addition to the diffusion-controlled redox reactions, the noticeable surface-induced pseudocapacitive reactions also significantly contribute to the charge storage upon sodiation and guarantee the rapid migrations of sodium ions/solvated compounds. This system further features a controlled emergence of a robust but thin solid electrolyte interphase layer, which could suppress the side reactions of active electrode with reactive electrolyte, maintain the fragile porous structure upon cycling, and facilitate the migrations of sodium ions and solvated sodium ion compounds.
机译:通过舒适但有效的NH 3热蚀刻路线合理设计的多孔炭黑已被研究为钠离子电池的醚基电解质中的阳极材料。 NH3热蚀刻后,具有35%重量损失的AS合成的CBN35炭黑在50mAg(-1)的比例为352mAhg(-1)的较大电荷容量,以及101mahg( - )的优异速率能力( - 1)在16000mA g(-1),由于其最高的微孔,适当的表面积,期望的微观结构和有前途的混合嵌入机制。令人印象深刻地,甚至循环在3200次以上的1600 mA g(-1),仍然可以实现103mAhg(-1)的出色可逆容量,仍然可以实现忽略的0.0162%的容量损耗。基于包括用于碳材料的相位演化结构探针的多模式表征,电化学技术和表面敏感的XA测量,异常电化学性能应源于改进的炭黑系统的若干优点。虽然特定的微孔结构提供相对较高的嗜钠钠储存位点,但是在基于醚的电解质中的新型杂化插入机制将使钠离子插入与溶剂化的钠离子物质共插入石墨相中。除了扩散控制的氧化还原反应之外,显着的表面诱导的假偶联反应还显着促进在调解时对电荷储存,并保证钠离子/溶剂化化合物的快速迁移。该系统进一步具有稳健但薄的固体电解质相互相位层的受控出现,其可以抑制活性电极与反应电解质的副反应,在循环时保持脆弱的多孔结构,并促进钠离子和溶剂化钠离子化合物的迁移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号