...
首页> 外文期刊>Nano Energy >Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes
【24h】

Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes

机译:大规模印刷合成在N,P掺杂碳中包封的过渡金属磷酸作为高效氢化阴极

获取原文
获取原文并翻译 | 示例
           

摘要

The large-scale synthesis accompanying structural modulation of efficient noble-metal-free catalysts with facile kinetics for the hydrogen evolution reaction (HER) is still a big challenge for electrolytic water splitting. Herein, we report a simple inkjet printing technology for the large-scale synthesis of a series of transition metal phosphide (TMP) nanoparticles encapsulated in N, P co-doped carbon supported on carbon fiber cloth (CF@NPC-TMP, TM = Mo, Co, Ni, Fe) as highly efficient hydrogen evolution cathodes using ionic liquids as phosphorus and carbon sources. The in-situ carbon nanolayers derived from ionic liquids not only expose abundant catalytically active sites and allow rapid electron transport to the catalytically active sites during HER but also effectively prevent the TMP nanoparticles from corroding to enhance their stability. All the as-prepared CF@NPC-TMP electrodes show ideal electrocatalytic performance for HER. Especially, the CF@NPC-MoP electrode only requires overpotentials of 87 and 145 mV to drive cathodic current densities of 10 and 100 mA cm(-2) in 0.5M H2SO4, respectively. In addition, this electrode continuously operates at a constant current density of 10 mA cm(-2) for 20 h with negligible rise in operating potential. The resultant CF@NPC-TMP electrodes also show ideal electrocatalytic activities toward HER in alkaline and neutral media. Hence, the synthesis strategy developed in this study may spark interest in research on TMP-based nanomaterials for various applications.
机译:伴随高贵金属 - 无金属催化剂的结构调节的大规模合成,用于氢进化反应(她)仍然是电解水分裂的巨大挑战。在此,我们报告了一种简单的喷墨印刷技术,用于大规模合成的一系列过渡金属磷化物(TMP)纳米颗粒包封在碳纤维布(CF @ NPC-TMP,TM = Mo)上封装在N,P共掺杂碳中,Co,Ni,Fe)作为使用离子液体作为磷和碳源的高效氢化阴极。衍生自离子液体的原位碳纳米黑子不仅暴露丰富的催化活性位点,并且在其期间允许快速电子传输到催化活性位点,但也有效地防止TMP纳米颗粒腐蚀以增强它们的稳定性。所有的AS准备的CF @ NPC-TMP电极为她表示理想的电催化性能。特别地,CF @ NPC-MOP电极仅需要87和145mV的过电位,以分别在0.5M H 2 SO 4中驱动10和100 mA(-2)的阴极电流密度。另外,该电极以10mA cm(-2)的恒定电流密度连续地操作20小时,运行电位的上升可忽略不计。所得CF @ NPC-TMP电极还显示出碱性和中性介质的理想电催化活性。因此,本研究中开发的合成策略可能会引发对各种应用的基于TMP的纳米材料的研究兴趣。

著录项

  • 来源
    《Nano Energy》 |2018年第2018期|共8页
  • 作者单位

    Huazhong Univ Sci &

    Technol State Key Lab Digital Mfg Equipment &

    Technol Key Lab Mat Chem Energy Convers &

    Storage Minist Educ Sch Chem &

    Chem Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci &

    Technol State Key Lab Digital Mfg Equipment &

    Technol Key Lab Mat Chem Energy Convers &

    Storage Minist Educ Sch Chem &

    Chem Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci &

    Technol State Key Lab Digital Mfg Equipment &

    Technol Key Lab Mat Chem Energy Convers &

    Storage Minist Educ Sch Chem &

    Chem Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci &

    Technol State Key Lab Digital Mfg Equipment &

    Technol Key Lab Mat Chem Energy Convers &

    Storage Minist Educ Sch Chem &

    Chem Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci &

    Technol State Key Lab Digital Mfg Equipment &

    Technol Key Lab Mat Chem Energy Convers &

    Storage Minist Educ Sch Chem &

    Chem Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci &

    Technol State Key Lab Digital Mfg Equipment &

    Technol Key Lab Mat Chem Energy Convers &

    Storage Minist Educ Sch Chem &

    Chem Engn Wuhan 430074 Peoples R China;

    Huazhong Univ Sci &

    Technol State Key Lab Digital Mfg Equipment &

    Technol Key Lab Mat Chem Energy Convers &

    Storage Minist Educ Sch Chem &

    Chem Engn Wuhan 430074 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Electrocatalysis; Hydrogen evolution reaction; Transition metal phosphide; Ionic liquid; N; P co-doped carbon; Inkjet printing;

    机译:电殖分析;氢气进化反应;过渡金属磷化物;离子液体;n;p共掺杂碳;喷墨印刷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号