...
首页> 外文期刊>Nature nanotechnology >Peltier cooling in molecular junctions
【24h】

Peltier cooling in molecular junctions

机译:珀耳帖在分子交叉点冷却

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion(1-4). Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions(5-9) has enabled studies of the relationship between thermoelectricity and molecular structure(10,11). However, observations of Peltier cooling in molecular junctions-a critical step for establishing molecular-based refrigeration-have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy(12,13) with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4 ''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted(2-4,14).
机译:分子交叉点中热电的研究对于开发各种技术的基本兴趣是基本兴趣,包括冷却(制冷)和热电转化(1-4)。最近在探测分子交叉点(5-9)的热电机(Seebeck效应)的实验进展使得能够研究热电和分子结构(10,11)之间的关系。然而,分子交叉点中珀耳帖冷却的观察 - 用于建立基于分子的制冷的关键步骤 - 已经保持无法进入。在这里,我们报告了分子交叉点珀耳帖冷却的直接实验观察。通过将导电探针原子力显微镜(12,13)与定制制造的Picowatt分辨率的热量测定微生物相积,我们创建了一种实验平台,使得能够统一的分子交叉点的电气,热电和能量耗散特性的表征。使用该平台,我们研究了具有原型分子的金交配(Au-Biphenyl-4,4'-二硫醇-Au,Au-Terphenyl-4,4'' - 硫醇-α和Au-4,4'-BiPyridine-Au)并揭示了加热或冷却和电荷传输特性之间的关系。我们的实验结论得到了自我能量校正的密度功能理论计算的支持。我们预计这些进步可以在理论上预测(2-4,14),刺激分子交叉点中的热电传输的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号