...
首页> 外文期刊>Nature nanotechnology >Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics
【24h】

Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics

机译:通过电子设备插入空间控制二维SNS2的掺杂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Doped semiconductors are the most important building elements for modern electronic devices(1). In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface(2,3). Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits(4-9). However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development(10). Here, we demonstrate a solvent based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of similar to 40 cm(2) V(-1)s(-1), and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene(5). Combining this intercalation technique with lithography, an atomically seamless p-n-metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.
机译:掺杂的半导体是现代电子设备最重要的建筑元素(1)。在基于硅基的集成电路中,可以在不引入高电阻接口(2,3)的情况下实现容易和可控的制造和这些材料的整合。此外,二维(2D)材料的出现使得能够实现原子上薄的集成电路(4-9)。然而,这些材料的2D性质阻止了使用传统的离子植入技术来用于载体掺杂和进一步的阻碍装置开发(10)。在这里,我们证明了一种基于溶剂基晶体化方法,以在原子薄极限处在同一母体材料中实现p型,n型和掺杂的半导体。与天然生长的N型S型空位SNS2相反,通过该技术获得的Cu插入双层SNS2显示相对于40cm(2)V(-1)S(-1)的空穴场效应迁移率,并且获得的CO-SNS2表现出具有与几层石墨烯(5)的薄层电阻的金属状行为。将该嵌入技术与光刻相结合,可以通过精确的尺寸和空间控制进一步实现原子无缝的P-N-金属连接,其使面内异质结构实际上适用于集成装置和其他2D材料。因此,所示的嵌入方法可以打开连接先前不同的集成电路世界和原子薄材料的新大道。

著录项

  • 来源
    《Nature nanotechnology》 |2018年第4期|共7页
  • 作者单位

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Phys Stanford CA 94305 USA;

    Oak Ridge Natl Lab Mat Sci &

    Technol Div Oak Ridge TN USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Oak Ridge Natl Lab Mat Sci &

    Technol Div Oak Ridge TN USA;

    SLAC Natl Accelerator Lab Stanford Inst Mat &

    Energy Sci Menlo Pk CA 94025 USA;

    Oak Ridge Natl Lab Mat Sci &

    Technol Div Oak Ridge TN USA;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号