...
首页> 外文期刊>Nature nanotechnology >Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem
【24h】

Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem

机译:人工旋转冰超导体异质系统中可切换的几何挫折

获取原文
获取原文并翻译 | 示例
           

摘要

Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics(1), such as data storage, memory and logic(2). However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system(3,4). Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure(5). The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions(6), electrons and holes in two-dimensional materials(7,8), and topological insulators(9), as well as colloids in soft materials(10-13).
机译:当有序晶格结构中的局部交互能量不能同时最小化时出现几何挫折,导致大量的退化状态。许多简并配置可能导致微电子(1)中的实际应用,例如数据存储,存储器和逻辑(2)。然而,难以实现非常高的退化性,尤其是在二维系统(3,4)中。在这里,我们在二维磁通量系统中展示了具有高退化性的原位可控几何挫折。我们在置于可重新配置的人工旋转冰结构(5)下方的超导薄膜中创造它。人工旋转冰中的可调谐磁性电荷与超导体中的磁通量相互作用,使得在令人沮丧和结晶的通量Quanta状态之间的切换。不同状态对超导临界电流轮廓具有可测量的影响,这可以通过应用外部磁场来通过精确选择旋转冰磁状态来重新配置。我们通过实现可重编程的通量量二极管来证明这些效果的适用性。使用人工旋转ice剪裁的“颗粒”的能量景观为几何挫折设计提供了一种新的范式,这可能阐明了一种控制其他材料系统中的新功能的路径,例如磁性臭氧(6),二维材料(7,8)中的电子和孔,以及拓扑绝缘体(9),以及软材料(10-13)中的胶体。

著录项

  • 来源
    《Nature nanotechnology》 |2018年第7期|共7页
  • 作者单位

    Argonne Natl Lab Mat Sci Div 9700 S Cass Ave Argonne IL 60439 USA;

    Univ Notre Dame Dept Phys Notre Dame IN 46556 USA;

    Argonne Natl Lab Mat Sci Div 9700 S Cass Ave Argonne IL 60439 USA;

    Argonne Natl Lab Mat Sci Div 9700 S Cass Ave Argonne IL 60439 USA;

    Argonne Natl Lab Mat Sci Div 9700 S Cass Ave Argonne IL 60439 USA;

    Argonne Natl Lab Ctr Nanoscale Mat 9700 S Cass Ave Argonne IL 60439 USA;

    Argonne Natl Lab Ctr Nanoscale Mat 9700 S Cass Ave Argonne IL 60439 USA;

    Argonne Natl Lab Mat Sci Div 9700 S Cass Ave Argonne IL 60439 USA;

    Univ Notre Dame Dept Phys Notre Dame IN 46556 USA;

    Argonne Natl Lab Mat Sci Div 9700 S Cass Ave Argonne IL 60439 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号