首页> 外文期刊>Nanoscale Horizons >A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries
【24h】

A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries

机译:一种3D多孔FEP / RGO调制分离器作为高性能锂硫电池的双功能多硫化物屏障

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-sulfur batteries (LSBs) have gained considerable attention for their desirable energy densities, high theoretical capacities, low cost and environmentally friendly properties. However, the shuttle effect of polysulfides seriously hinders their future practical applications. Herein, a dual-function cathode structure, consisting of 3D porous FeP/rGO microspheres supported on both aluminum foil and a commercial separator, exhibits excellent performance by providing strong adsorption with respect to Li2S_x (x = 1, 2, 4, 6 and 8) and S8. In this rational design, the iron phosphide (FeP) nanoparticles act as a catalyst to accelerate polysulfide conversion and as the designated sites for adsorption. The 3D rGO porous conductive network can provide enough space for sulfur loading and to physically adsorb the polysulfides. More importantly, density functional theory (DFT) calculations also verified the strong interactions (with adsorption energy values of-4.21 to-1.97 eV) between the FeP(lll) surface and the sulfur species. The electrochemical results show that the cell using the dual-function cathode structure delivers a capacity of 925.7 mA h g~(-1) with capacity degradation of 0.05% per cycle after 500 cycles, at a current density of 0.5C. It is also worth mentioning that the cell with sulfur loading of ~2.2 mg cm~(-2) maintained a high capacity of 483 mA h g~(-1) at 0.5C after 500 cycles. In summary, the above results demonstrate the promising application of the dual-function cathode structure for high-performance LSBs.
机译:锂 - 硫电池(LSB)对其所需的能量密度,高理论能力,低成本和环保性质进行了相当大的关注。然而,多硫化物的穿梭效果严重阻碍了他们未来的实际应用。这里,由支撑在铝箔和商业隔膜上的3D多孔FEP / RGO微球组成的双函数阴极结构通过提供相对于Li2S_X的强烈吸附(X = 1,2,4,6和8,表现出优异的性能。 )和S8。在该合理设计中,磷化铁(FEP)纳米粒子用作加速多硫化物转化的催化剂,并作为吸附的指定位点。 3D Rgo多孔导电网络可以为硫载荷提供足够的空间,并物理吸附多硫化物。更重要的是,密度函数理论(DFT)计算还验证了FEP(LLL)表面和硫种类之间的强相互作用(具有-4.21至-1.97eV的吸附能值-1.97eV)。电化学结果表明,使用双函数阴极结构的电池提供925.7mA H G〜(-1)的容量,500次循环后的电容降解为0.05%,电流密度为0.5℃。值得一提的是,在500次循环后,硫加载含量〜2.2mg cm〜(-2)的电池在0.5℃下保持高容量为483mA Hg〜(-1)。总之,上述结果证明了对高性能LSB的双函数阴极结构的有希望的应用。

著录项

  • 来源
    《Nanoscale Horizons》 |2020年第3期|共11页
  • 作者单位

    Key Laboratory of Microelectronics and Energy of Henan Province Henan Joint International Research Laboratory of Hew Energy Storage Technology Xinyang Normal University Xinyang 464000 P. R China.;

    Key Laboratory of Microelectronics and Energy of Henan Province Henan Joint International Research Laboratory of Hew Energy Storage Technology Xinyang Normal University Xinyang 464000 P. R China.;

    Key Laboratory of Microelectronics and Energy of Henan Province Henan Joint International Research Laboratory of Hew Energy Storage Technology Xinyang Normal University Xinyang 464000 P. R China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号