...
首页> 外文期刊>Neuron >Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse
【24h】

Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse

机译:SynaptoTagmin-7介导的异步释放在中央突触中提升高保真同步传输

获取原文
获取原文并翻译 | 示例
           

摘要

Synchronous release triggered by Ca2+ binding to synaptotagmin-1, -2, or -9 is thought to drive fast synaptic transmission, whereas asynchronous release induced by Ca2+ binding to synaptotagmin-7 is thought to produce delayed synaptic signaling, enabling prolonged synaptic computations. However, it is unknown whether synaptotagmin-7-dependent asynchronous release performs a physiological function at fast synapses lacking a prolonged signaling mode, such as the calyx of Held synapse. Here, we show at the calyx synapse that synapto-tagmin-7-dependent asynchronous release indeed does not produce a prolonged synaptic signal after a stimulus train and does not contribute to short-term plasticity, but induces a steady-state, asynchronous postsynaptic current during stimulus trains. This steady-state postsynaptic current does not increase overall synaptic transmission but instead sustains reliable generation of postsynaptic spikes that are precisely time locked to presynaptic spikes. Thus, asynchronous release surprisingly functions, at least at some synapses, to sustain high-fidelity neurotransmission driven by synchronous release during high-frequency stimulus trains.
机译:CA2 +与SynaptoTagmin-1,-2或-9触发的同步释放被认为是驱动快速突触传递,而CA2 +与SynaptoTagmin-7的绑定引起的异步释放被认为产生延迟突触信令,从而实现延长的突触计算。然而,尚不清楚SynaptoTagmin-7依赖性异步释放是否在缺乏长时间信令模式下的快速突触处执行生理功能,例如保持突触的Calyx。在这里,我们在Calyx Synapse上展示了Synapto-tagmin-7依赖性异步释放确实不会在刺激列车之后产生长期的突触信号,并且不会导致短期可塑性,但诱导稳态,异步突触突触电流在刺激列车期间。这种稳态后突触电流不会增加整体突触传输,而是维持可靠的一代突触尖峰,精确时间被锁定到突触尖峰。因此,异步释放令人惊讶的是,至少在一些突起中,以在高频刺激列车期间通过同步释放驱动的高保真神经传递。

著录项

  • 来源
    《Neuron》 |2017年第4期|共14页
  • 作者

    Luo Fujun; Sudhof Thomas C.;

  • 作者单位

    Stanford Univ Dept Mol &

    Cellular Physiol Stanford CA 94304 USA;

    Stanford Univ Dept Mol &

    Cellular Physiol Stanford CA 94304 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经病学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号