...
首页> 外文期刊>Nonlinear processes in geophysics >Generalization properties of feed-forward neural networks trained on Lorenz systems
【24h】

Generalization properties of feed-forward neural networks trained on Lorenz systems

机译:洛伦茨系统培训前馈神经网络的概括特性

获取原文
获取原文并翻译 | 示例
           

摘要

Neural networks are able to approximate chaotic dynamical systems when provided with training data that cover all relevant regions of the system's phase space. However, many practical applications diverge from this idealized scenario. Here, we investigate the ability of feed-forward neural networks to (1) learn the behavior of dynamical systems from incomplete training data and (2) learn the influence of an external forcing on the dynamics Climate science is a real-world example where these questions may be relevant: it is concerned with a non-stationary chaotic system subject to external forcing and whose behavior is known only through comparatively short data series. Our analysis is performed on the Lorenz63 and Lorenz95 models. We show that for the Lorenz63 system, neural networks trained on data covering only part of the system's phase space struggle to make skillful short-term forecasts in the regions excluded from the training Additionally, when making long series of consecutive forecasts, the networks struggle to reproduce trajectories exploring regions beyond those seen in the training data, except for cases where only small parts are left out during training. We find this is due to the neural network learning a localized mapping for each region of phase space in the training data rather than a global mapping. This manifests itself in that parts of the networks learn only particular parts of the phase space. In contrast, for the Lorenz95 system the networks succeed in generalizing to new parts of the phase space not seen in the training data. We also find that the networks are able to learn the influence of an external forcing, but only when given relatively large ranges of the forcing in the training These results point to potential limitations of feed-forward neural networks in generalizing a system's behavior given limited initial information. Much attention must therefore be given to designing appropriate train-test splits for real-world applications.
机译:当提供覆盖系统相位空间的所有相关区域的训练数据时,神经网络能够近似混乱动态系统。然而,许多实际应用从这个理想化的场景分歧。在这里,我们调查前馈神经网络到(1)的能力,了解来自不完全训练数据的动态系统的行为,(2)了解外部迫使对动态气候科学的影响是一个真实世界的示例问题可能是相关的:它涉及由外部强制执行的非静止混沌系统,并且其行为仅通过相对短的数据系列所知。我们的分析是在Lorenz63和Lorenz95型号上进行的。我们表明,对于Lorenz63系统,在数据中只涉及数据的数据培训,以便在从训练中排除的区域中进行熟练的短期预测,在制作长期连续预测时,网络难以再现探索超出在培训数据中看到的地区的轨迹,除了在训练期间只遗漏小部分的情况。我们发现这是由于神经网络学习训练数据中的阶段空间的每个区域的局部映射而不是全局映射。这在网络的那些部分中表现出仅限于相位空间的特定部分。相比之下,对于Lorenz95系统,网络成功地概括到训练数据中未见的相空间的新部分。我们还发现网络能够学习外部强制的影响,而是仅在训练中给出的相对大的范围时,这些结果指向前馈神经网络的潜在限制概括了一个有限的初始系统的行为信息。因此,必须对设计适当的火车测试分裂来设计适当的训练。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号