...
首页> 外文期刊>SAE International Journal of Engines >Development of CFD Inverse Analysis Technology Using the Transient Adjoint Method and Its Application to Engine In-Cylinder Flow
【24h】

Development of CFD Inverse Analysis Technology Using the Transient Adjoint Method and Its Application to Engine In-Cylinder Flow

机译:使用瞬态伴随方法及其应用于发动机缸流量的CFD逆分析技术的开发

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional CFD-based shape optimization technology that uses parametric shape modification and optimal solutions searching algorithms has the two problems: (1) outcome of optimized shapes depend on the selection of design parameters made by the designer, and (2) high computational costs. To resolve those problems, two innovative inverse analysis technologies based on the Adjoint Method were developed in previous study: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape for maximizing the cost function in the constrained design space. However, these technologies are only applicable to steady flows. Since most flows in a vehicle (such as engine in-cylinder flow) are transient, a practical technology for surface geometry sensitivity analysis has been developed based on the Transient Adjoint Method. This can be applied to fully transient flows like engine in-cylinder flow to calculate sensitivity distributions for arbitrary temporal performance in a targeted period utilizing transient flow results from commercially available CFD solvers. This was accomplished by introducing original discretized governing equations that are consistent with the Transient Adjoint theory and realistic flows including moving meshes and other events, as well as by developing methodologies for performing analysis stably and efficiently. This study confirmed that tumble flow rotation early in the compression stroke can be intensified taking into account pressure loss in the intake stroke of a stock engine by modifying the design shape of the intake port or piston according to the surface geometry sensitivity distribution calculated by the developed technology.
机译:使用参数形状修改和最优解决方案的基于CFD的形状优化技术具有两个问题:(1)优化形状的结果取决于设计者制作的设计参数,(2)高计算成本。为了解决这些问题,在先前的研究中开发了基于伴随方法的两种创新逆分辨率技术:表面几何变形灵敏度分析,以识别要修改的位置,以及为最佳形状产生最佳形状的拓扑优化设计空间。然而,这些技术仅适用于稳定流动。由于车辆中的大多数(例如发动机缸内流动)是瞬态的,因此基于瞬态伴随方法开发了一种用于表面几何灵敏度分析的实用技术。这可以应用于像发动机缸内流的完全瞬态流量,以计算利用来自市售的CFD溶剂的瞬态流量的瞬态流动中的任意时间性能的灵敏度分布。这是通过引入与瞬态伴随理论和现实流量一致的原始离散化控制方程来实现,包括移动网格和其他事件,以及开发稳定有效地进行分析的方法。该研究证实,通过根据开发的表面几何敏感性分布改变进气口或活塞的设计形状,可以加强在压缩行程中早期的滚动流动旋转在股票发动机的进气冲程中考虑压力损失。技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号