...
首页> 外文期刊>SAE International Journal of Engines >An Improved Physics-Based Combustion Modeling Approach for Control of Direct Injection Diesel Engines
【24h】

An Improved Physics-Based Combustion Modeling Approach for Control of Direct Injection Diesel Engines

机译:一种改进的基于物理燃烧建模方法,用于控制直喷柴油发动机

获取原文
获取原文并翻译 | 示例
           

摘要

Cycle-by-cycle combustion prediction in real time during engine operation can serve as a vital input for operating at optimal performance conditions and for emission control. In this work, a real-time capable physics-based combustion model has been proposed for the prediction of the heat release rate in a direct injection diesel engine. The model extends the approaches proposed earlier in the literature by considering spray dynamics such as spray penetration and Sauter mean diameter in order to calculate the mass of evaporated fuel from the spray. Wall impingement of the liquid spray is predicted by considering the liquid length based on the prevailing in-cylinder conditions. These effects are considered even after the hydraulic end of injection till the last droplet of fuel impinges on the combustion chamber wall. The fuel evaporated from the wall film and its contribution to the kinetic energy of the charge are also considered. The model assumes the heat release rate to be proportional to the mass of fuel available in the vapor phase and the instantaneous turbulent kinetic energy of the charge (which depends on the kinetic energy imparted by the injector and that available in the liquid fuel). The constants of the model were tuned with limited experimental data on a turbocharged, intercooled common rail multicylinder diesel engine. The heat release rate predicted by the model was validated against experimental data at other load conditions from the same engine and from another naturally aspirated common rail diesel engine without any further tuning. The results indicated that the model can predict the heat released during different stages of diffusion combustion viz. free jet, wall jet, and after-burning with good accuracy. Since the model does not involve iterative procedures and uses conventionally available parameter inputs in the ECU, it can be used for real-time combustion control.
机译:发动机操作期间实时循环燃烧预测可以用作在最佳性能条件下操作和发射控制的重要输入。在这项工作中,已经提出了一种实时能力的基于物理的燃烧模型,用于预测直喷式柴油发动机中的热释放速率。该模型通过考虑喷射动力学等喷射渗透和燃烧器平均直径来延伸在文献中提出的方法,以便从喷雾中计算蒸发燃料的质量。通过基于圆柱形条件的普遍型气体的液体长度来预测液体喷雾的壁冲击。即使在喷射液压端后也被认为是在燃烧室壁上施加在燃烧室壁上的最后一滴之后的这些效果。还考虑了从壁膜蒸发的燃料及其对电荷的动能的贡献。该模型假设热释放速率与蒸汽相中可用的燃料质量成比例,并且电荷的瞬时湍流动能(这取决于喷射器赋予的动能并且可用于液体燃料)。该模型的常数在涡轮增压,中间电压的共同轨道多岩柴油发动机上用有限的实验数据进行调整。通过来自同一发动机的其他负载条件和另一个自然吸气的共轨柴油发动机的实验数据验证了模型预测的热释放速率,并且没有任何进一步调谐。结果表明,该模型可以预测扩散燃烧Qiz的不同阶段释放的热量。自由喷射,墙面喷射,以及良好的准确度。由于该模型不涉及迭代程序并在ECU中使用传统上可用的参数输入,因此它可用于实时燃烧控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号