首页> 外文期刊>SIAM journal on applied dynamical systems >Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism
【24h】

Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism

机译:植物工程纳米粒子的脂质交换包膜渗透(LEEP):普遍定位机制

获取原文
获取原文并翻译 | 示例
           

摘要

Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated.(1) Here, we examine the subcellular uptake and kinetic trapping of a wide range of nanoparticles for the first time, using the plant chloroplast as a model system, but validated in vivo in living plants. Confocal visible and near-infrared fluorescent microscopy and single particle tracking of gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran and poly(acrylic acid) nanoceria, and various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT and 30-base (dAdT) sequence of ssDNA (AT)(15) wrapped SWCNTs (hereafter referred to asss(AT)(15)-SWCNT), are used to demonstrate that particle size and the magnitude, but not the sign, of the zeta potential are key in determining whether a particle is spontaneously and kinetically trapped within the organelle, despite the negative zeta potential of the envelope. We develop a mathematical model of this lipid exchange envelope and penetration (LEEP) mechanism, which agrees well with observations of this size and zeta potential dependence. The theory predicts a critical particle size below which the mechanism fails at all zeta potentials, explaining why nanoparticles are critical for this process. LEEP constitutes a powerful particulate transport and localization mechanism for nanoparticles within the plant system.
机译:纳米粒子提供了明显的优势,可用于被动和主动渗透到生物学上重要的膜中。然而,纳米颗粒在生物植物,植物细胞和细胞器内的摄取和定位机制尚未阐明。(1)这里,我们首次检查亚细胞摄取和动力学诱捕各种纳米颗粒,使用植物叶绿体作为模型系统,但在生活植物中验证。 Concocal可见和近红外荧光显微镜和金 - 半胱氨酸-AF405(GNP-Cys-AF405),链霉抗生物素蛋白 - 量子点(SA-QD),葡聚糖和聚(丙烯酸)纳米腔和各种聚合物包装的单粒跟踪单壁碳纳米管(SWCNTS),包括脂质 - PEG-SWCNT,壳聚糖-WCNT和30碱基(DADT)序列的SSDNA(AT)(15)包裹的SWCNT(以下称为ARS(AT)(15)-swnt ),用于证明Zeta电位的粒度和幅度,但不是标志,在确定颗粒是否自发和动力学地捕获在细胞器内,尽管包膜的负Zeta电位,但是。我们开发了这种脂质交换包络和渗透(LEEP)机制的数学模型,这与这种尺寸和Zeta电位依赖的观察结果很好。该理论预测,下面的临界粒度在其上,该机制在所有Zeta电位上发生故障,解释为什么纳米颗粒对该过程至关重要。 Leep构成植物系统内纳米颗粒的强大颗粒式运输和定位机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号