首页> 外文期刊>Petroleum Science and Technology >The direct dimethyl ether (DME) synthesis process from syngas II. Intrinsic kinetics and catalyst deactivation in one-step LPDMEtm process
【24h】

The direct dimethyl ether (DME) synthesis process from syngas II. Intrinsic kinetics and catalyst deactivation in one-step LPDMEtm process

机译:来自合成气II的直接二甲醚(DME)合成方法。 一步LPDMETM过程中的内在动力学和催化剂失活

获取原文
获取原文并翻译 | 示例
           

摘要

In Part I of this series, it was seen that the favorable thermodynamic and kinetic coupling in the one-step LPDMEtm process - of methanol dehydration reaction (very rapid kinetics and at/near thermodynamic equilibrium) with the methanol synthesis reaction (slower kinetics and under thermodynamic limitation) - leads the beneficial chemical synergy.In this part II of Series, we briefly discern the intrinsic kinetics of the LPMeOHtm and LPDMEtm systems, and also shed light of the catalyst deactivation phenomena in these processes. Among the many reports on intrinsic kinetics of the one-step LPMeOHtm and LPDMEtm processes, two illustrative kinetic studies, from the groups of University of Akron and Air Products and Chemicals, Inc. are highlighted and discussed further. For development of intrinsic kinetic models of LPMeOHtm and LPDMEtm systems, a detailed thermodynamic framework has been developed which allows one to compute the liquid phase concentrations of reactive species, at phase equilibria and at chemical reaction equilibria. The intrinsic kinetic models of the LPDMEtm system are mainly based on the independent, component kinetic models of methanol synthesis (van den Bussche and Froment, 1996) and methanol dehydration (Bercic & Levec, 1992). From an overarching analysis of the deactivation of supported copper catalysts for methanol synthesis and other reactions (methanol decomposition and methanol steam reforming), we propose that thermal sintering, i.e., increase in Cu particle size and loss of metal surface area, is the only cause of catalyst deactivation in methanol synthesis reactions over Cu/ZnO/Al2O3 industrial-type methanol catalysts.
机译:在本系列的第一部分中,有人看来,在一步LPDMETM过程中有利的热力学和动力学耦合 - 甲醇脱水反应(非常快速的动力学和热力学平衡)与甲醇合成反应(较慢的动力学和较慢的动力学)热力学限制) - 引导有益的化学协同作用。在该系列中,我们简要辨别LPMEOHTM和LPDMETM系统的内在动力学,并在这些过程中阐明了催化剂失活现象的光。在一步LPMEOHTM和LPDMETM工艺的内在动力学的许多报告中,来自阿克伦大学和空气产品和化学公司,Inc。的两种说明性动力学研究,并突出显示并进一步讨论。为了开发LPMEOHTM和LPDMETM系统的内在动力学模型,已经开发了一种详细的热力学框架,其允许人们在相平衡和化学反应平衡下计算反应性物质的液相浓度。 LPDMETM系统的内在动力学模型主要基于甲醇合成(van den Bussche和1996)和甲醇脱水(Bercic&Levec,1992)的独立性动力学模型。从对甲醇合成和其他反应的支持铜催化剂的失活的总体分析中,我们提出了热烧结,即Cu粒度的增加和金属表面积的损失,是唯一的原因Cu / ZnO / Al2O3工业型甲醇催化剂甲醇合成反应中催化剂去激活的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号