...
首页> 外文期刊>Physica Scripta: An International Journal for Experimental and Theoretical Physics >Physical aspects of entropy optimization in mixed convective MHD flow of carbon nanotubes (CNTs) in a rotating frame
【24h】

Physical aspects of entropy optimization in mixed convective MHD flow of carbon nanotubes (CNTs) in a rotating frame

机译:旋转框架中碳纳米管(CNTs)混合对流MHD流动熵优化的物理方面

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this article is to investigate the physical aspects of entropy optimization in mixed convective magnetohydrodynamic flow of carbon nanotubes (CNTs) in a rotating frame. Flow is generated due to stretching of the sheet. The mechanism of nanoparticles transport is obtained by using the Xue model. Here we have used water as a base fluid. Both single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are considered as nanoparticles in base fluid. The energy equation is modeled subject to viscous dissipation and heat source/sink. With the help of second laws of thermodynamics total entropy generation rate is calculated. Physical importance of single and MWCNTs are discussed graphically. Nonlinear partial systems are converted to ordinary ones through appropriate transformations. The obtained governing systems are solved through OHAM for series solutions. Characteristics of different physical variables on velocity, entropy generation, Bejan number and temperature are discussed via graphs. Surface drag force and heat transfer rate are computed numerically for both SWCNTs and MWCNTs. The obtained result presents that surface drag force and heat transfer rate are increased via larger nanoparticles volume friction. Entropy generation rate is enhanced for higher values of magnetic parameter and Brinkman number. Furthermore, Bejan number is maximum for Br = 0 and then gradually decreases for larger values of Brinkman number.
机译:本文的目的是研究旋转框架中碳纳米管(CNTs)混合对流磁流动流动流动的熵优化的物理方面。由于纸张的拉伸而产生流动。通过使用Xue模型获得纳米颗粒传输的机制。在这里,我们用水作为基础流体。单壁碳纳米管(SWCNTS)和多壁碳纳米管(MWCNT)都被认为是基础流体中的纳米颗粒。能量方程被建模受粘性耗散和热源/水槽。借助第二热力学定律,计算总熵生成率。图形上讨论单个和MWCNT的物理重要性。非线性部分系统通过适当的变换转换为普通系统。通过OHAM进行串联解决方案解决了所获得的管理系统。通过图表讨论了不同物理变量对速度,熵生成,BEJAN数和温度的特征。对于SWCNT和MWCNT,表面拖动力和传热速率是数值计算的。所得结果呈现,通过较大的纳米颗粒体积摩擦提高了表面拖动力和传热速率。对于磁场和Brinkman号的较高值,增强了熵生成率。此外,BEJAN号为BR = 0的最大值,然后逐渐减少Brinkman号的更大值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号